Advertisement

Journal of Neurology

, Volume 265, Supplement 1, pp 26–28 | Cite as

MicroRNA profile of human endo-/perilymph

  • Markus Rohde
  • Inga Sinicina
  • Anja Horn
  • Norbert Eichner
  • Gunter Meister
  • Michael Strupp
  • Susanne Himmelein
Letter to the Editors
  • 59 Downloads

Dear Sirs,

The fluids of the human inner ear (endolymph and perilymph) are a self-contained system without any direct connection to other body fluids. Therefore, the composition of these fluids is unique. Both fluids differ in their ionic composition, which has to be maintained to ensure auditory and vestibular function within the inner ear. While the ionic concentration of the perilymph is more like that of other extracellular fluids, the composition of the endolymph is comparable to the cytosol [ 1, 2, 3]. Studies on the proteome of the perilymph also showed a high similarity with body fluids like blood plasma and cerebrospinal fluids (CSF) in humans [ 4, 5]. However, studies concentrating on the miRNA profile of the human endo-/perilymph are lacking. miRNAs are small, 19–24 nucleotide-long, non-coding RNA fragments that play a major role in the regulation of gene expression in a variety of processes [ 6]. Differential miRNA expression profiles in blood as well as in CSF have been...

Notes

Acknowledgements

Funded by the German Federal Ministry of Education and Research (German Center for Vertigo and Balance Disorders, Grant code 01EO1401). We thank Katie Göttlinger for copyediting the manuscript.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical standard statement

The study was approved by the Ethical Committee of the Medical Faculty of the Ludwig Maximilians University of Munich. For blood samples signed written consent was obtained from all participants. No written consent was given for endo-/perilymph as they were obtained post-mortem.

References

  1. 1.
    Davies DG (1968) Biochemistry of the inner ear fluids—experimental and clinical observations. J Laryngol Otol 82(4):301–311CrossRefGoogle Scholar
  2. 2.
    Ghanem TA, Breneman KD, Rabbitt RD, Brown HM (2008) Ionic composition of endolymph and perilymph in the inner ear of the oyster toadfish, Opsanus tau. Biol Bull 214(1):83–90CrossRefGoogle Scholar
  3. 3.
    Stover T, Diensthuber M (2011) Molecular biology of hearing. GMS Curr Top Otorhinolaryngol Head Neck Surg 10:Doc06.  https://doi.org/10.3205/cto000079 CrossRefPubMedGoogle Scholar
  4. 4.
    Lysaght AC, Kao SY, Paulo JA, Merchant SN, Steen H, Stankovic KM (2011) Proteome of human perilymph. J Proteome Res 10(9):3845–3851.  https://doi.org/10.1021/pr200346q CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Swan EE, Peppi M, Chen Z, Green KM, Evans JE, McKenna MJ, Mescher MJ, Kujawa SG, Sewell WF (2009) Proteomics analysis of perilymph and cerebrospinal fluid in mouse. Laryngosc 119(5):953–958.  https://doi.org/10.1002/lary.20209 CrossRefGoogle Scholar
  6. 6.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297CrossRefGoogle Scholar
  7. 7.
    Sorensen SS, Nygaard AB, Nielsen MY, Jensen K, Christensen T (2014) miRNA expression profiles in cerebrospinal fluid and blood of patients with acute ischemic stroke. Transl Stroke Res 5(6):711–718.  https://doi.org/10.1007/s12975-014-0364-8 CrossRefPubMedGoogle Scholar
  8. 8.
    Teplyuk NM, Mollenhauer B, Gabriely G, Giese A, Kim E, Smolsky M, Kim RY, Saria MG, Pastorino S, Kesari S, Krichevsky AM (2012) MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity. Neuro Oncol 14(6):689–700.  https://doi.org/10.1093/neuonc/nos074 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006.  https://doi.org/10.1038/cr.2008.282 CrossRefPubMedGoogle Scholar
  10. 10.
    Gantier MP, McCoy CE, Rusinova I, Saulep D, Wang D, Xu D, Irving AT, Behlke MA, Hertzog PJ, Mackay F, Williams BR (2011) Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Res 39(13):5692–5703.  https://doi.org/10.1093/nar/gkr148 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Nagy C, Maheu M, Lopez JP, Vaillancourt K, Cruceanu C, Gross JA, Arnovitz M, Mechawar N, Turecki G (2015) Effects of postmortem interval on biomolecule integrity in the brain. J Neuropathol Exp Neurol 74(5):459–469.  https://doi.org/10.1097/NEN.0000000000000190 CrossRefPubMedGoogle Scholar
  12. 12.
    Lu C, Shan Z, Hong J, Yang L (2017) MicroRNA-92a promotes epithelial-mesenchymal transition through activation of PTEN/PI3K/AKT signaling pathway in non-small cell lung cancer metastasis. Int J Oncol 51(1):235–244.  https://doi.org/10.3892/ijo.2017.3999 CrossRefPubMedGoogle Scholar
  13. 13.
    Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120(5):635–647.  https://doi.org/10.1016/j.cell.2005.01.014 CrossRefPubMedGoogle Scholar
  14. 14.
    Lv G, Wu M, Wang M, Jiang X, Du J, Zhang K, Li D, Ma N, Peng Y, Wang L, Zhou L, Zhao W, Jiao Y, Gao X, Hu Z (2017) miR-320a regulates high mobility group box 1 expression and inhibits invasion and metastasis in hepatocellular carcinoma. Liver Int 37(9):1354–1364.  https://doi.org/10.1111/liv.13424 CrossRefPubMedGoogle Scholar
  15. 15.
    Buckingham RA, Valvassori GE (2001) Inner ear fluid volumes and the resolving power of magnetic resonance imaging: can it differentiate endolymphatic structures? Ann Otol Rhinol Laryngol 110(2):113–117.  https://doi.org/10.1177/000348940111000204 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Markus Rohde
    • 1
    • 2
  • Inga Sinicina
    • 3
  • Anja Horn
    • 2
    • 4
  • Norbert Eichner
    • 5
  • Gunter Meister
    • 5
  • Michael Strupp
    • 1
    • 2
  • Susanne Himmelein
    • 1
    • 2
  1. 1.Department of Neurology, German Center for Vertigo and Balance Disorders, DSGZ, Klinikum GrosshadernLudwig Maximilians UniversityMunichGermany
  2. 2.German Center for Vertigo and Balance Disorders, DSGZLudwig Maximilians UniversityMunichGermany
  3. 3.Department of Legal MedicineLudwig Maximilians UniversityMunichGermany
  4. 4.Institute of Anatomy and Cell Biology ILudwig Maximilians UniversityMunichGermany
  5. 5.Laboratory for RNA BiologyBiochemistry Center Regensburg (BZR)RegensburgGermany

Personalised recommendations