Laska MJ, Brudek T, Nissen KK, Christensen T, Møller-Larsen A, Petersen T, Nexø BA (2012) Expression of HERV-Fc1, a human endogenous retrovirus, is increased in patients with active multiple sclerosis. J Virol 86(7):3713–3722
Article
PubMed
PubMed Central
CAS
Google Scholar
Fierz W (2017) Multiple sclerosis: an example of pathogenic viral interaction. Virol J 14:42. https://doi.org/10.1186/s12985-017-0719-3
Article
PubMed
PubMed Central
CAS
Google Scholar
Magiorkinis G, Belshaw R, Katzourakis A (2013) “There and back again”: revisiting the pathophysiological roles of human endogenous retroviruses in the post-genomic era. Philos Trans R Soc B Biol Sci 368(1626):20120504. https://doi.org/10.1098/rstb.2012.0504
Article
Google Scholar
Nath A, Küry P, Sciascia do Olival G, Dolei A, Karlsson H, Groc L et al (2015) International workshop on human endogenous retroviruses and diseases, HERVs & disease 2015. Mob DNA 6:20. https://doi.org/10.1186/s13100-015-0051-7
Article
PubMed Central
PubMed
Google Scholar
Mameli G, Serra C, Astone V, Castellazzi M, Poddighe L, Fainardi E, Neri W, Granieri E, Dolei A (2008) Inhibition of multiple sclerosis—associated retrovirus as biomarker of interferon therapy. J Neurovirol 14(1):73–77. https://doi.org/10.1080/13550280701801107
Article
PubMed
CAS
Google Scholar
D’Amico E, Patti F, Zanghì A, Zappia M (2016) A personalized approaches in progressive multiple sclerosis: the current status of disease modifying therapies (DMTs) and future perspectives. Int J Mol Sci 17(10):1725. https://doi.org/10.3390/ijms17101725
Article
PubMed Central
CAS
Google Scholar
Sotgiu S, Mameli G, Serra C, Zarbo IR, Arru G, Dolei A (2010) Multiple sclerosis-associated retrovirus and progressive disability of multiple sclerosis. Mult Scler J 16(10):1248–1251. https://doi.org/10.1177/1352458510376956
Article
CAS
Google Scholar
Van Munster CEP, Uitdehaag BMJ (2017) Outcome measures in clinical trials for multiple sclerosis. CNS Drugs 31(3):217–236. https://doi.org/10.1007/s40263-017-0412-5
Article
PubMed
PubMed Central
Google Scholar
Morandi E, Tarlinton RE, Gran B (2015) Multiple sclerosis between genetics and infections: human endogenous retroviruses in monocytes and macrophages. Front Immunol 6:1–6
Article
CAS
Google Scholar
Uzameckis D, Capenko S, Logina I, Murovska M, Blomberg J (2016) No definite evidence for human endogenous retroviral HERV-W and HERV-H RNAs in plasma of Latvian patients suffering from multiple sclerosis and other neurological diseases. Proc Latv Acad Sci 4:182–192
Google Scholar
Van Horssen J, Van der Pol S, Nijland P, Amor S, Perron H (2016) Human endogenous retrovirus W in brain lesions: rationale for targeted therapy in multiple sclerosis. Mult Scler Relat Disord 8:11–18
Article
PubMed
Google Scholar
Mameli G, Poddighe L, Astone V, Delogu G, Arru G, Sotgiu S, Dolei A (2009) Novel reliable real-time PCR for differential detection of MSRVenv and syncytin-1 in RNA and DNA from patients with multiple sclerosis. J Virol Methods 161(1):98–106. https://doi.org/10.1016/j.jviromet.2009.05.024
Article
PubMed
CAS
Google Scholar
Tongyoo P, Avihingsanon Y, Prom-On S, Mutirangura A, Mhuantong W, Hirankarn N (2017) EnHERV: enrichment analysis of specific human endogenous retrovirus patterns and their neighboring genes. Belshaw R, ed. PLoS One 12(5):e0177119. https://doi.org/10.1371/journal.pone.0177119
Article
PubMed
PubMed Central
CAS
Google Scholar
Nissen KK, Laska MJ, Hansen B, Pedersen FS, Nexø BA (2012) No additional copies of HERV-Fc1 in the germ line of multiple sclerosis patients. Virol J 9:188. https://doi.org/10.1186/1743-422X-9-188
Article
PubMed
PubMed Central
Google Scholar
Olival GS, Faria TS, Nali LHS, de Oliveira A, Casseb J, Vidal J et al (2013) Genomic analysis of ERVWE2 locus in patients with multiple sclerosis: absence of genetic association but potential role of human endogenous retrovirus type W elements in molecular mimicry with myelin antigen. Front Microbiol 4:172. https://doi.org/10.3389/fmicb.2013.00172
Article
PubMed
PubMed Central
Google Scholar
Miranda-Hernandez S, Baxter A (2015) The role of toll-like receptors in multiple sclerosis. Am J Clin Exp Immunol 2(1):75–93
Google Scholar
Grandi N, Tramontano E (2017) Type W Human Endogenous Retrovirus (HERV-W) integrations and their mobilization by l1 machinery: contribution to the human transcriptome and impact on the host physiopathology. Viruses 9(7):162. https://doi.org/10.3390/v9070162
Article
PubMed Central
Google Scholar
De la Hera B, Varadé J, García-Montojo M, Alcina A, Fedetz M, Alloza I et al (2014) Human endogenous retrovirus HERV-Fc1 association with multiple sclerosis susceptibility: a meta-analysis. PLoS One 9(3):e90182. https://doi.org/10.1371/journal.pone.0090182
Article
PubMed
PubMed Central
Google Scholar
Møller-Larsen A, Brudek T, Petersen T, Petersen E, Aagaard M, Hansen D, Christensen T (2013) Flow cytometric assay detecting cytotoxicity against human endogenous retrovirus antigens expressed on cultured multiple sclerosis cells. Clin Exp Immunol 173(3):398–410. https://doi.org/10.1111/cei.12133
Article
PubMed
PubMed Central
CAS
Google Scholar
Garcia-Montojo M, Dominguez-Mozo M, Arias-Leal A, Arias-Leal A, Garcia-Martinez Á, De las Heras V, Casanova I et al (2013) The DNA copy number of human endogenous retrovirus-w (msrv-type) is increased in multiple sclerosis patients and is influenced by gender and disease severity. PLoS One 8(1):e53623. https://doi.org/10.1371/journal.pone.0053623
Article
PubMed
PubMed Central
CAS
Google Scholar
Krone B, Grange JM (2013) Is a hypothetical melanoma-like neuromelanin the underlying factor essential for the aetiopathogenesis and clinical manifestations of multiple sclerosis? BMC Neurol 13:91. https://doi.org/10.1186/1471-2377-13-91
Article
PubMed
PubMed Central
CAS
Google Scholar
Mameli G, Madeddu G, Mei A, Uleri E, Poddighe L, Delogu L et al (2013) Activation of MSRV-type endogenous retroviruses during infectious mononucleosis and Epstein–Barr virus latency: the missing link with multiple sclerosis? Stewart JP, ed. PLoS One 8(11):e78474. https://doi.org/10.1371/journal.pone.0078474
Article
PubMed
PubMed Central
CAS
Google Scholar
De Meirleir KL, Khaiboullina SF, Frémont M, Rizvanov A, Palotás A, Lombardi V (2013) Plasmacytoid dendritic cells in the duodenum of individuals diagnosed with myalgic encephalomyelitis are uniquely immunoreactive to antibodies to human endogenous retroviral proteins. In Vivo (Athens, Greece) 27(2):177–187
Google Scholar
Campos-Sánchez R, Cremona MA, Pini A, Chiaromonte F, Makova KD (2016) Integration and fixation preferences of human and mouse endogenous retroviruses uncovered with functional data analysis. Kosakovsky Pond SL, ed. PLoS Comput Biol 12(6):e1004956. https://doi.org/10.1371/journal.pcbi.1004956
Article
PubMed
PubMed Central
CAS
Google Scholar
García-Montojo M, de la Hera B, Varadé J et al (2014) HERV-W polymorphism in chromosome X is associated with multiple sclerosis risk and with differential expression of MSRV. Retrovirology 11:2. https://doi.org/10.1186/1742-4690-11-2
Article
PubMed
PubMed Central
Google Scholar
Duperray A, Barbe D, Raguenez G, Weksler B, Romero I, Couraud P et al (2015) Inflammatory response of endothelial cells to a human endogenous retrovirus associated with multiple sclerosis is mediated by TLR4. Int Immunol 27(11):545–553. https://doi.org/10.1093/intimm/dxv025
Article
PubMed
PubMed Central
CAS
Google Scholar
Derfuss T, Curtin F, Guebelin C (2015) A phase IIa randomised clinical study of GNbAC1, a humanised monoclonal antibody against the envelope protein of multiple sclerosis-associated endogenous retrovirus in multiple sclerosis patients. Mult Scler 21(7):885–893
Article
PubMed
CAS
Google Scholar
Lyksborg M, Siebner HR, Sørensen PS, Blinkenberg M, Parker G, Dogonowski A et al (2014) Secondary progressive and relapsing remitting multiple sclerosis leads to motor-related decreased anatomical connectivity. PLoS One 9(4):e95540. https://doi.org/10.1371/journal.pone.0095540
Article
PubMed
PubMed Central
CAS
Google Scholar
Mallucci G, Peruzzotti-Jametti L, Bernstock JD, Pluchino S (2015) The role of immune cells, glia and neurons in white and gray matter pathology in multiple sclerosis. Prog Neurobiol. https://doi.org/10.1016/j.pneurobio.2015.02.003
PubMed
PubMed Central
Article
Google Scholar
Heffernan C, Sumer H, Guillemin GJ, Manuelpillai U, Verma PJ (2012) Design and screening of a glial cell-specific, cell penetrating peptide for therapeutic applications in multiple sclerosis. Nait-Oumesmar B, ed. PLoS One 7(9):e45501. https://doi.org/10.1371/journal.pone.0045501
Article
PubMed
PubMed Central
CAS
Google Scholar
Rawji KS, Yong VW (2013) The benefits and detriments of macrophages/microglia in models of multiple sclerosis. Clin Dev Immunol 2013:948976. https://doi.org/10.1155/2013/948976
Article
PubMed
PubMed Central
CAS
Google Scholar
Morandi E, Tanasescu R, Tarlinton R, Constantinescu C, Zhang W, Tench C, Gran B (2017) The association between human endogenous retroviruses and multiple sclerosis: a systematic review and meta-analysis. PLoS One 12(2):e0172415. https://doi.org/10.1371/journal.pone.0172415 (Accessed 20 Aug 2017)
Article
PubMed
PubMed Central
CAS
Google Scholar
Brütting C, Emmer A, Kornhuber ME, Staege MS (2017) Cooccurrences of putative endogenous retrovirus-associated diseases. Biomed Res Int 2017:7973165. https://doi.org/10.1155/2017/7973165
Article
PubMed
PubMed Central
CAS
Google Scholar
Rahn AC, Backhus I, Fuest F (2016) Comprehension of confidence intervals—development and piloting of patient information materials for people with multiple sclerosis: qualitative study and pilot randomised controlled trial. BMC Med Inform Decis Mak 16:122. https://doi.org/10.1186/s12911-016-0362-8
Article
PubMed
PubMed Central
Google Scholar
Katoh I, Kurata S (2013) Association of endogenous retroviruses and long terminal repeats with human disorders. Front Oncol 3:234. https://doi.org/10.3389/fonc.2013.00234
Article
PubMed
PubMed Central
Google Scholar
Grandi N, Cadeddu M, Blomberg J, Tramontano E (2016) Contribution of type W human endogenous retroviruses to the human genome: characterization of HERV-W proviral insertions and processed pseudogenes. Retrovirology 13(1):67. https://doi.org/10.1186/s12977-016-0301-x
Article
PubMed
PubMed Central
CAS
Google Scholar
Balestrieri E, Pica F, Matteucci C, Zenobi R, Sorrentino R, Argaw-Denboba A et al (2015) Transcriptional activity of human endogenous retroviruses in human peripheral blood mononuclear cells. Biomed Res Int 2015:164529. https://doi.org/10.1155/2015/164529
Article
PubMed
PubMed Central
CAS
Google Scholar
Rodgers JM, Miller S (2012) Cytokine control of inflammation and repair in the pathology of multiple sclerosis. Yale J Biol Med 85(4):447–468
PubMed
PubMed Central
CAS
Google Scholar
Khalaj AJ, Yoon J, Nakai J, Winchester Z, Moore SM, Yoo T et al (2013) Estrogen receptor (ER) β expression in oligodendrocytes is required for attenuation of clinical disease by an ERβ ligand. Proc Natl Acad Sci USA 110(47):19125–19130. https://doi.org/10.1073/pnas.1311763110 (Accessed 20 Aug 2017)
Article
PubMed
CAS
Google Scholar
Douvaras P, Wang J, Zimmer M, Hanchuk S, O’Bara M, Sadiq S et al (2014) Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells. Stem Cell Rep 3(2):250–259. https://doi.org/10.1016/j.stemcr.2014.06.012
Article
CAS
Google Scholar
Romano CM (2013) Erratum: genomic analysis of ERVWE2 locus in patients with Multiple sclerosis: Absence of genetic association but potential role of Human Endogenous retrovirus type W elements in molecular mimicry with myelin antigen. Front Microbiol 4:345. https://doi.org/10.3389/fmicb.2013.00345
Article
PubMed
PubMed Central
Google Scholar
Menezes SM, Decanine D, Brassat D, Khouri R, Schnitman S, Kruschewsky R et al (2014) CD80+ and CD86+ B cells as biomarkers and possible therapeutic targets in HTLV-1 associated myelopathy/tropical spastic paraparesis and multiple sclerosis. J Neuroinflamm 11:18. https://doi.org/10.1186/1742-2094-11-18
Article
CAS
Google Scholar
Mameli G, Poddighe L, Mei A, Uleri E, Sotgiu S, Serra C et al (2012) Expression and activation by Epstein Barr virus of human endogenous retroviruses-W in blood cells and astrocytes: inference for multiple sclerosis. Villoslada P, ed. PLoS One 7(9):e44991. https://doi.org/10.1371/journal.pone.0044991
Article
PubMed
PubMed Central
CAS
Google Scholar
Schmitt K, Richter C, Backes C, Meese E, Ruprecht K, Mayer J (2013) Comprehensive analysis of human endogenous retrovirus group HERV-W locus transcription in multiple sclerosis brain lesions by high-throughput amplicon sequencing. J Virol 87(24):13837–13852. https://doi.org/10.1128/JVI.02388-13
Article
PubMed
PubMed Central
CAS
Google Scholar
Maliniemi P, Vincendeau M, Mayer J, Frank O, Hahtola S, Karenko L et al (2013) Expression of human endogenous retrovirus-W including syncytin-1 in cutaneous t-cell lymphoma. Schindler M, ed. PLoS One 8(10):e76281. https://doi.org/10.1371/journal.pone.0076281
Article
PubMed
PubMed Central
CAS
Google Scholar
Lossius A, Johansen JN, Torkildsen Ø, Vartdal F, Holmøy T (2012) Epstein–Barr virus in systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis—association and causation. Viruses 4(12):3701–3730. https://doi.org/10.3390/v4123701
Article
PubMed
PubMed Central
CAS
Google Scholar
Cusick MF, Libbey JE, Fujinami RS (2013) Multiple sclerosis: autoimmunity and viruses. Curr Opin Rheumatol 25(4):496–501. https://doi.org/10.1097/BOR.0b013e328362004d
Article
PubMed
PubMed Central
CAS
Google Scholar
Libbey JE, Cusick MF, Fujinami RS (2014) Role of pathogens in multiple sclerosis. Int Rev Immunol 33(4):266–283. https://doi.org/10.3109/08830185.2013.823422
Article
PubMed
CAS
Google Scholar
Bello-Morales R, Crespillo AJ, García B, Dorado L, Martín B, Tabarés E et al (2014) Effect of cellular differentiation on HSV-1 infection of oligodendrocytic cells. Shukla D, ed. PLoS One 9(2):e89141. https://doi.org/10.1371/journal.pone.0089141
Article
PubMed
PubMed Central
CAS
Google Scholar
Jones RB, Leal FE, Hasenkrug AM, Segurado A, Nixon D, Ostrowski M, Kallas E (2013) Human endogenous retrovirus K(HML-2) Gag and Env specific T-cell responses are not detected in HTLV-I-infected subjects using standard peptide screening methods. J Negat Results Biomed 12:3. https://doi.org/10.1186/1477-5751-12-3
Article
PubMed
PubMed Central
Google Scholar
Buzdin AA, Prassolov V, Garazha AV (2017) Friends-enemies: endogenous retroviruses are major transcriptional regulators of human DNA. Front Chem 5:35. https://doi.org/10.3389/fchem.2017.00035
Article
PubMed
PubMed Central
CAS
Google Scholar
Goris A, Pauwels I, Gustavsen MW et al (2015) Genetic variants are major determinants of CSF antibody levels in multiple sclerosis. Brain 138(3):632–643. https://doi.org/10.1093/brain/awu405
Article
PubMed
PubMed Central
Google Scholar
Laska MJ, Nissen KK, Nexø BA (2013) Cellular mechanisms influencing the transcription of human endogenous retrovirus, HERV-Fc1. PLoS One 8(1):e53895. https://doi.org/10.1371/journal.pone.0053895
Article
PubMed
PubMed Central
CAS
Google Scholar
Faucard R, Madeira A, Gehin N, Authier F, Panaite P, Lesage C et al (2016) Human endogenous retrovirus and neuroinflammation in chronic inflammatory demyelinating polyradiculoneuropathy. EBioMedicine 6:190–198. https://doi.org/10.1016/j.ebiom.2016.03.001
Article
PubMed
PubMed Central
Google Scholar
Douville R, Nath A (2014) Human endogenous retroviruses and the nervous system. Handb Clin Neurol 123:465–485. https://doi.org/10.1016/B978-0-444-53488-0.00022-5
Article
PubMed
PubMed Central
Google Scholar
O’Gorman C, Lucas R, Taylor B (2012) Environmental risk factors for multiple sclerosis: a review with a focus on molecular mechanisms. Int J Mol Sci 13(9):11718–11752. https://doi.org/10.3390/ijms130911718
Article
PubMed
PubMed Central
CAS
Google Scholar
Nexø BA, Villesen P, Nissen KK, Lindegaard H, Rossing P, Petersen T et al (2016) Are human endogenous retroviruses triggers of autoimmune diseases? Unveiling associations of three diseases and viral loci. Immunol Res 64:55–63. https://doi.org/10.1007/s12026-015-8671-z
Article
PubMed
CAS
Google Scholar
Marchione P, Morreale M, Giacomini P, Izzo C, Pontecorvo S, Altieri M, Francia A (2014) Ultrasonographic evaluation of cerebral arterial and venous haemodynamics in multiple sclerosis: a case–control study. PLoS One 9(10):e111486. https://doi.org/10.1371/journal.pone.0111486
Article
PubMed
PubMed Central
CAS
Google Scholar
Shirani A, Okuda DT, Stüve O (2016) Therapeutic advances and future prospects in progressive forms of multiple sclerosis. Neurotherapeutics 13(1):58–69. https://doi.org/10.1007/s13311-015-0409-z
Article
PubMed
PubMed Central
CAS
Google Scholar
Wuest SC, Mexhitaj I, Chai NR, Romm E, Scheffel J, Xu B et al (2014) Complex role of Herpes viruses in the disease process of multiple sclerosis. PLoS One 9(8):e105434. https://doi.org/10.1371/journal.pone.0105434
Article
PubMed
PubMed Central
CAS
Google Scholar
Harris VK, Sadiq SA (2014) Biomarkers of therapeutic response in multiple sclerosis: current status. Mol Diagn Ther 18(6):605–617. https://doi.org/10.1007/s40291-0140117-0
Article
PubMed
PubMed Central
CAS
Google Scholar
Miljković D, Spasojević I (2013) Multiple sclerosis: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 19(18):2286–2334. https://doi.org/10.1089/ars.2012.5068
Article
PubMed
PubMed Central
CAS
Google Scholar
Xia Z, White CC, Owen EK, Von Korff A, Clarkson S, McCabe C et al (2016) GEMS project: a platform to investigate multiple sclerosis risk. Ann Neurol 79(2):178–189. https://doi.org/10.1002/ana.24560
Article
PubMed
Google Scholar
Rommer PS, Dudesek A, Stüve O, Zettl UK (2014) Monoclonal antibodies in treatment of multiple sclerosis. Clin Exp Immunol 175(3):373–384
Article
PubMed
PubMed Central
CAS
Google Scholar
Wootla B, Watzlawik JO, Stavropoulos N (2016) Recent advances in monoclonal antibody therapies for multiple sclerosis. Expert Opin Biol Ther 16(6):827–839. https://doi.org/10.1517/14712598.2016.1158809
Article
PubMed
PubMed Central
CAS
Google Scholar
Curtin F, Perron H, Kromminga A, Porchet H, Lang AB (2015) Preclinical and early clinical development of GNbAC1, a humanized IgG4 monoclonal antibody targeting endogenous retroviral MSRV-Env protein. mAbs 7(1):265–275. https://doi.org/10.4161/19420862.2014.985021
Article
PubMed
CAS
Google Scholar
Najafi S, Ghane M, Yousefzadeh-Chabok S, Amiri M (2016) The high prevalence of the varicella zoster virus in patients with relapsing-remitting multiple sclerosis: a case-control study in the north of Iran. Jundishapur J Microbiol 9(3):e34158. https://doi.org/10.5812/jjm.34158
Article
PubMed
PubMed Central
CAS
Google Scholar
Longbrake EE, Parks BJ, Cross AH (2013) Monoclonal antibodies as disease modifying therapy in multiple sclerosis. Curr Neurol Neurosci Rep 13(11):390. https://doi.org/10.1007/s11910-013-0390-z
Article
PubMed
PubMed Central
CAS
Google Scholar
Arru G, Leoni S, Pugliatti M, Mei A, Serra C, Delogu LG, Mameli G (2014) Natalizumab inhibits the expression of human endogenous retroviruses of the W family in multiple sclerosis patients: a longitudinal cohort study. Mult Scler J 20(2):174–182. https://doi.org/10.1177/1352458513494957
Article
CAS
Google Scholar