Journal of Neurology

, Volume 265, Issue 4, pp 809–816 | Cite as

Cerebellum and cognition in multiple sclerosis: the fall status matters

  • Alon Kalron
  • Gilles Allali
  • Anat Achiron
Original Communication


Cerebellar volume has been linked with cognitive performances in MS; however, the association in terms of fall status has never been compared. Therefore, the objective of the current study was to compare cognitive performance with cerebellar volume between MS fallers and non-fallers. The cross-sectional study included 140 PwMS (96 women). MRI volumetric analysis was based on the FreeSurfer image analysis suite. Volumes of the cerebellar gray and white matter were identified as the region of interest. Cognitive function included scores obtained from a computerized cognitive battery of tests. The sample was divided into fallers and non-fallers. MS fallers demonstrated a lower global cognitive performance and reduced gray and white matter cerebellar volumes compared to non-fallers. A significant association was found between total gray and white matter cerebellar volume and visual spatial subdomain (P value = 0.044 and 0.032, respectively) in the non-fallers group. The association remained significant after controlling for the total cranial volume and neurological disability (P value = 0.026 and 0.047, respectively). A relationship was found between the visual spatial score and the left gray matter cerebellum volume; R2 = 0.44, P value = 0.021. We believe that a unique relationship exists between the cerebellum structure and cognitive processing according to fall history in PwMS and should be considered when investigating the association between brain functioning and cognitive performances in MS.


Cerebellum Cognition Fall Multiple sclerosis Brain volume 


Compliance with ethical standards

Ethical standard

The study was approved by the Sheba Hospital Research Ethics Committee (Ethics Ref: 5596-08/141210).

Conflicts of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Chiaravalloti ND, DeLuca J (2008) Cognitive impairment in multiple sclerosis. Lancet Neurol 7:1139–1151CrossRefPubMedGoogle Scholar
  2. 2.
    Feuillet L, Reuter F, Audoin B, Malikova I, Barrau K, Cherif AA et al (2007) Early cognitive impairment in patients with clinically isolated syndrome suggestive of multiple sclerosis. Mult Scler 13:124–127CrossRefPubMedGoogle Scholar
  3. 3.
    Amato MP, Portaccio E, Goretti B, Zipoli V, Battaglini M, Bartolozzi ML et al (2007) Association of neocortical volume changes with cognitive deterioration in relapsing-remitting multiple sclerosis. Arch Neurol 64:1157–1161CrossRefPubMedGoogle Scholar
  4. 4.
    Weier K, Banwell B, Cerasa A, Collins DL, Dogonowski AM, Lassmann H et al (2015) The role of the cerebellum in multiple sclerosis. Cerebellum 14:364–374CrossRefPubMedGoogle Scholar
  5. 5.
    Schmahmann JD, Pandya DN (1997) The cerebrocerebellar system. Int Rev Neurobiol 41:31–60CrossRefPubMedGoogle Scholar
  6. 6.
    Moroso A, Ruet A, Lamargue-Hamel D, Munsch F, Deloire M, Coupe P et al (2017) Posterior lobules of the cerebellum and information processing speed at various stages of multiple sclerosis. J Neurol Neurosurg Psychiatry 88:146–151CrossRefPubMedGoogle Scholar
  7. 7.
    Ruet A, Hamel D, Deloire MS, Charre-Morin J, Saubusse A, Brochet B (2014) Information processing speed impairment and cerebellar dysfunction in relapsing-remitting multiple sclerosis. J Neurol Sci 347:246–250CrossRefPubMedGoogle Scholar
  8. 8.
    Weier K, Penner IK, Magon S, Amann M, Naegelin Y, Andelova M et al (2014) Cerebellar abnormalities contribute to disability including cognitive impairment in multiple sclerosis. PLoS One 9:e86916CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Weier K, Till C, Fonov V, Yeh EA, Arnold DL, Banwell B et al (2016) Contribution of the cerebellum to cognitive performance in children and adolescents with multiple sclerosis. Mult Scler 22:599–607CrossRefPubMedGoogle Scholar
  10. 10.
    Kalron A, Givon U, Frid L, Dolev M, Achiron A (2016) Static posturography and falls according to pyramidal, sensory and cerebellar functional systems in people with multiple sclerosis. PLoS One 11:e0164467CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Prosperini L, Kouleridou A, Petsas N, Leonardi L, Tona F, Pantano P et al (2011) The relationship between infratentorial lesions, balance deficit and accidental falls in multiple sclerosis. J Neurol Sci 304:55–60CrossRefPubMedGoogle Scholar
  12. 12.
    D’Orio VL, Foley FW, Armentano F, Picone MA, Kim S, Holtzer R (2012) Cognitive and motor functioning in patients with multiple sclerosis: neuropsychological predictors of walking speed and falls. J Neurol Sci 316:42–44CrossRefPubMedGoogle Scholar
  13. 13.
    Kalron A (2014) The relationship between specific cognitive domains, fear of falling, and falls in people with multiple sclerosis. Biomed Res Int 2014:281760CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Kalron A, Aloni R, Dolev M, Frid L, Givon U, Menascu S (2018) The relationship between gait variability and cognitive functions differs between fallers and non-fallers in MS. J Neural Transm 19.
  15. 15.
    Kalron A, Allali G (2017) Gait and cognitive impairments in multiple sclerosis: the specific contribution of falls and fear of falling. J Neural Transm 124(11):1407–1416CrossRefPubMedGoogle Scholar
  16. 16.
    Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46(7):831–844CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M et al (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69:292–302CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452CrossRefPubMedGoogle Scholar
  19. 19.
    Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C et al (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355CrossRefPubMedGoogle Scholar
  20. 20.
    Fischl B, Salat DH, van der Kouwe AJ, Makris N, Segonne F, Quinn BT et al (2004) Sequence-independent segmentation of magnetic resonance images. Neuroimage 23:S69–S84CrossRefPubMedGoogle Scholar
  21. 21.
    Rosas HD, Liu AK, Hersch S, Glessner M, Ferrante RJ, Salat DH et al (2002) Regional and progressive thinning of the cortical ribbon in Huntington’s disease. Neurology 58:695–701CrossRefPubMedGoogle Scholar
  22. 22.
    Kuperberg GR, Broome MR, McGuire PK, David AS, Eddy M, Ozawa F et al (2003) Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry 60:878–888CrossRefPubMedGoogle Scholar
  23. 23.
    Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RS, Busa E et al (2004) Thinning of the cerebral cortex in aging. Cereb Cortex 14:721–730CrossRefPubMedGoogle Scholar
  24. 24.
    Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S et al (2006) Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage 32:180–194CrossRefPubMedGoogle Scholar
  25. 25.
    Achiron A, Doniger GM, Harel Y, Appleboim-Gavish N, Lavie M, Simon ES (2007) Prolonged response times characterize cognitive performance in multiple sclerosis. Eur J Neurol 14:1102–1108CrossRefPubMedGoogle Scholar
  26. 26.
    Finlayson ML, Peterson EW, Cho CC (2006) Risk factors for falling among people aged 45–90 years with multiple sclerosis. Arch Phys Med Rehabil 87:1274–1279CrossRefPubMedGoogle Scholar
  27. 27.
    Beauchet O, Launay CP, Barden J, Liu-Ambrose T, Chester VL, Szturm T et al (2017) Association between falls and brain subvolumes: results from a cross-sectional analysis in healthy older adults. Brain Topogr 30:272–280CrossRefPubMedGoogle Scholar
  28. 28.
    Boisgontier MP, Cheval B, Chalavi S, van Ruitenbeek P, Leunissen I, Levin O et al (2017) Individual differences in brainstem and basal ganglia structure predict postural control and balance loss in young and older adults. Neurobiol Aging 50:47–59CrossRefPubMedGoogle Scholar
  29. 29.
    Gianni C, Prosperini L, Jonsdottir J, Catteneo D (2014) A systematic review of factors associated with accidental falls in people with multiple sclerosis: a meta-analytic approach. Clin Rehabil 28(7):704–716CrossRefPubMedGoogle Scholar
  30. 30.
    Valentino P, Cerasa A, Chiriaco C, Nistico R, Pirritano D, Gioia M et al (2009) Cognitive deficits in multiple sclerosis patients with cerebellar symptoms. Mult Scler 15:854–859CrossRefPubMedGoogle Scholar
  31. 31.
    Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121:561–579CrossRefPubMedGoogle Scholar
  32. 32.
    Damasceno A, Damasceno BP, Cendes F (2014) The clinical impact of cerebellar grey matter pathology in multiple sclerosis. PLoS One 9:e96193CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Tedesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG (2011) The cerebellar cognitive profile. Brain 134:3672–3686CrossRefPubMedGoogle Scholar
  34. 34.
    Baillieux H, De Smet HJ, Dobbeleir A, Paquier PF, De Deyn PP, Marien P (2010) Cognitive and affective disturbances following focal cerebellar damage in adults: a neuropsychological and SPECT study. Cortex 46:869–879CrossRefPubMedGoogle Scholar
  35. 35.
    Marien P, Engelborghs S, Fabbro F, De Deyn PP (2001) The lateralized linguistic cerebellum: a review and a new hypothesis. Brain Lang 79:580–600CrossRefPubMedGoogle Scholar
  36. 36.
    Perrochon A, Holtzer R, Laidet M, Armand S, Assal F, Lalive PH et al (2017) Postural control is associated with cognition and fear of falling in patients with multiple sclerosis. J Neural Transm 124:495–500CrossRefPubMedGoogle Scholar
  37. 37.
    Morgen K, Sammer G, Courtney SM, Wolters T, Melchior H, Blecker CR et al (2007) Distinct mechanisms of altered brain activation in patients with multiple sclerosis. Neuroimage 37:937–946CrossRefPubMedGoogle Scholar
  38. 38.
    Covey TJ, Zivadinov R, Shucard JL, Shucard DW (2011) Information processing speed, neural efficiency, and working memory performance in multiple sclerosis: differential relationships with structural magnetic resonance imaging. J Clin Exp Neuropsychol 33:1129–1145CrossRefPubMedGoogle Scholar
  39. 39.
    Johnen A, Landmeyer NC, Burkner PC, Wiendi H, Meuth SG, Holling H (2017) Distinct cognitive impairments in different disease courses of multiple sclerosis—a systematic review and meta-analysis. Neurosci Biobehav Rev 83:568–578CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physical Therapy, Sackler Faculty of Medicine, School of Health ProfessionsTel-Aviv UniversityTel AvivIsrael
  2. 2.Sagol School of NeurosciencesTel-Aviv UniversityTel AvivIsrael
  3. 3.Division of Neurology, Department of Clinical NeurosciencesGeneva University HospitalsGenevaSwitzerland
  4. 4.Division of Cognitive and Motor Aging, Department of Neurology, Albert Einstein College of MedicineYeshiva UniversityBronxUSA
  5. 5.Faculty of MedicineUniversity of GenevaGenevaSwitzerland
  6. 6.Multiple Sclerosis Center, Sheba Medical CenterTel HashomerIsrael
  7. 7.Sackler Faculty of MedicineTel-Aviv UniversityTel AvivIsrael

Personalised recommendations