Skip to main content

Advertisement

Log in

Neurophysiology and neurochemistry of corticobasal syndrome

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Corticobasal syndrome is a rare neurodegenerative disorder, which presents with a progressive, asymmetrical, akinetic rigid syndrome and early cortical signs. However, clinical, pathological, and electrophysiological heterogeneity makes the understanding of this syndrome challenging. Corticobasal syndrome can have various pathological substrates including corticobasal degeneration, Alzheimer’s disease, Fronto-temporal degeneration with TDP inclusions, Creutzfeldt–Jakob disease, and progressive supranuclear palsy (PSP). Furthermore, tools such as transcranial magnetic stimulation (TMS) and functional neuroimaging techniques like PET and SPECT have not been adequately used to supplement the clinico-pathological heterogeneity. TMS studies in CBS have revealed changes in cortical excitability and transcortical inhibition. Despite the availability of more than 2 decades, its potential in CBS has not been fully utilized in studying the cortical plasticity and effect of Levodopa on central neurophysiology. PET and SPECT studies in CBS have shown abnormalities in regional glucose metabolism, asymmetrical involvement of presynaptic dopaminergic system, and ascending cholinergic connections to the cortex. While most studies have shown normal D2 receptor-binding activity in striatum of CBS cases, the results have not been unanimous. Functional neuroimaging and TMS studies in CBS have shown the involvement of GABAergic, muscarinic, and dopaminergic systems. In this review, we aim to provide the current state of understanding of central neurophysiology and neurochemistry of CBS using TMS and functional neuroimaging techniques. We also highlight the heterogeneous nature of this disorder and the existing knowledge gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Booth TC, Nathan M, Waldman AD et al (2015) The role of functional dopamine-transporter SPECT imaging in parkinsonian syndromes, part 2. Am J Neuroradiol 36:236–244. https://doi.org/10.3174/ajnr.A3971

    Article  CAS  PubMed  Google Scholar 

  2. Berti V, Pupi A, Mosconi L (2011) PET/CT in diagnosis of movement disorders. Ann NY Acad Sci 1228:93–108. https://doi.org/10.1111/j.1749-6632.2011.06025.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Whitwell JL, Höglinger GU, Antonini A et al (2017) Radiological biomarkers for diagnosis in PSP: where are we and where do we need to be? Mov Disord Off J Mov Disord Soc 32:955–971. https://doi.org/10.1002/mds.27038

    Article  Google Scholar 

  4. Lee SE, Rabinovici GD, Mayo MC et al (2011) Clinicopathological correlations in corticobasal degeneration. Ann Neurol 70:327–340. https://doi.org/10.1002/ana.22424

    Article  PubMed  PubMed Central  Google Scholar 

  5. Seppi K, Poewe W (2010) Brain magnetic resonance imaging techniques in the diagnosis of parkinsonian syndromes. Neuroimaging Clin N Am 20:29–55. https://doi.org/10.1016/j.nic.2009.08.016

    Article  PubMed  Google Scholar 

  6. Dickson DW, Bergeron C, Chin SS et al (2002) Office of rare diseases neuropathologic criteria for corticobasal degeneration. J Neuropathol Exp Neurol 61:935–946

    Article  CAS  PubMed  Google Scholar 

  7. Dickson DW (2012) Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harb Perspect Med 2:a009258. https://doi.org/10.1101/cshperspect.a009258

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rossini PM, Burke D, Chen R et al (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I. F. C. N. Committee. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 126:1071–1107. https://doi.org/10.1016/j.clinph.2015.02.001

    Article  CAS  Google Scholar 

  9. Salvador R, Silva S, Basser PJ, Miranda PC (2011) Determining which mechanisms lead to activation in the motor cortex: a modeling study of transcranial magnetic stimulation using realistic stimulus waveforms and sulcal geometry. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 122:748–758. https://doi.org/10.1016/j.clinph.2010.09.022

    Article  CAS  Google Scholar 

  10. Boeve BF, Lang AE, Litvan I (2003) Corticobasal degeneration and its relationship to progressive supranuclear palsy and frontotemporal dementia. Ann Neurol 54(Suppl 5):S15–S19. https://doi.org/10.1002/ana.10570

    Article  PubMed  Google Scholar 

  11. Burrell JR, Hornberger M, Vucic S et al (2014) Apraxia and motor dysfunction in corticobasal syndrome. PLoS One 9:e92944. https://doi.org/10.1371/journal.pone.0092944

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lu CS, Ikeda A, Terada K et al (1998) Electrophysiological studies of early stage corticobasal degeneration. Mov Disord Off J Mov Disord Soc 13:140–146. https://doi.org/10.1002/mds.870130126

    Article  CAS  Google Scholar 

  13. Kühn AA, Grosse P, Holtz K et al (2004) Patterns of abnormal motor cortex excitability in atypical parkinsonian syndromes. Clin Neurophysiol 115:1786–1795. https://doi.org/10.1016/j.clinph.2004.03.020

    Article  PubMed  Google Scholar 

  14. Hanajima R, Ugawa Y, Terao Y et al (1996) Ipsilateral cortico-cortical inhibition of the motor cortex in various neurological disorders. J Neurol Sci 140:109–116

    Article  CAS  PubMed  Google Scholar 

  15. Frasson E, Bertolasi L, Bertasi V et al (2003) Paired transcranial magnetic stimulation for the early diagnosis of corticobasal degeneration. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 114:272–278

    Article  CAS  Google Scholar 

  16. Okuma Y, Urabe T, Mochizuki H et al (2000) Asymmetric cortico-cortical inhibition in patients with progressive limb-kinetic apraxia. Acta Neurol Scand 102:244–248

    Article  CAS  PubMed  Google Scholar 

  17. Yokota T, Saito Y, Shimizu Y (1995) Increased corticomotoneuronal excitability after peripheral nerve stimulation in dopa-nonresponsive hemiparkinsonism. J Neurol Sci 129:34–39

    Article  CAS  PubMed  Google Scholar 

  18. Strafella A, Ashby P, Lang AE (1997) Reflex myoclonus in cortical-basal ganglionic degeneration involves a transcortical pathway. Mov Disord Off J Mov Disord Soc 12:360–369. https://doi.org/10.1002/mds.870120315

    Article  CAS  Google Scholar 

  19. Matsunaga K, Uozumi T, Murai Y, Tsuji S (1997) Electrophysiological study of a case of clinically diagnosed corticobasal degeneration with rhythmic myoclonus. Rinsho Shinkeigaku 37:1001–1005

    CAS  PubMed  Google Scholar 

  20. Kato M (1997) A study of magnetic stimulation in patients with clinically diagnosed corticobasal degeneration. Rinsho Shinkeigaku 37:969–975

    CAS  PubMed  Google Scholar 

  21. Pal PK, Gunraj CA, Li J-Y et al (2008) Reduced intracortical and interhemispheric inhibitions in corticobasal syndrome. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc 25:304–312. https://doi.org/10.1097/WNP.0b013e318182d304

    Google Scholar 

  22. Leiguarda RC, Merello M, Nouzeilles MI et al (2003) Limb-kinetic apraxia in corticobasal degeneration: clinical and kinematic features. Mov Disord Off J Mov Disord Soc 18:49–59. https://doi.org/10.1002/mds.10303

    Article  Google Scholar 

  23. Tyvaert L, Cassim F, Derambure P, Defebvre L (2007) Neurophysiology of corticobasal degeneration. Rev Neurol (Paris) 163:779–791

    Article  CAS  Google Scholar 

  24. Thompson PD, Day BL, Rothwell JC et al (1994) The myoclonus in corticobasal degeneration. Evidence for two forms of cortical reflex myoclonus. Brain J Neurol 117 (Pt 5):1197–1207

    Article  Google Scholar 

  25. Monza D, Ciano C, Scaioli V et al (2003) Neurophysiological features in relation to clinical signs in clinically diagnosed corticobasal degeneration. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol 24:16–23. https://doi.org/10.1007/s100720300016

    CAS  Google Scholar 

  26. Boeve BF (2011) The multiple phenotypes of corticobasal syndrome and corticobasal degeneration: implications for further study. J Mol Neurosci MN 45:350–353. https://doi.org/10.1007/s12031-011-9624-1

    Article  CAS  PubMed  Google Scholar 

  27. Trompetto C, Buccolieri A, Marchese R et al (2003) Impairment of transcallosal inhibition in patients with corticobasal degeneration. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 114:2181–2187

    Article  CAS  Google Scholar 

  28. Chen R, Yung D, Li J-Y (2003) Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex. J Neurophysiol 89:1256–1264. https://doi.org/10.1152/jn.00950.2002

    Article  PubMed  Google Scholar 

  29. Yamauchi H, Fukuyama H, Nagahama Y et al (1998) Atrophy of the corpus callosum, cortical hypometabolism, and cognitive impairment in corticobasal degeneration. Arch Neurol 55:609–614

    Article  CAS  PubMed  Google Scholar 

  30. Valls-Solé J, Tolosa E, Marti MJ et al (2001) Examination of motor output pathways in patients with corticobasal ganglionic degeneration using transcranial magnetic stimulation. Brain J Neurol 124:1131–1137

    Article  Google Scholar 

  31. Feinberg TE, Schindler RJ, Flanagan NG, Haber LD (1992) Two alien hand syndromes. Neurology 42:19. https://doi.org/10.1212/WNL.42.1.19

    Article  CAS  PubMed  Google Scholar 

  32. Dan Y, Poo M-M (2004) Spike timing-dependent plasticity of neural circuits. Neuron 44:23–30. https://doi.org/10.1016/j.neuron.2004.09.007

    Article  CAS  PubMed  Google Scholar 

  33. Cooke SF, Bliss TVP (2006) Plasticity in the human central nervous system. Brain J Neurol 129:1659–1673. https://doi.org/10.1093/brain/awl082

    Article  CAS  Google Scholar 

  34. Pascual-Leone A, Nguyet D, Cohen LG et al (1995) Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol 74:1037–1045

    Article  CAS  PubMed  Google Scholar 

  35. Thickbroom GW, Byrnes ML, Stell R, Mastaglia FL (2003) Reversible reorganisation of the motor cortical representation of the hand in cervical dystonia. Mov Disord Off J Mov Disord Soc 18:395–402. https://doi.org/10.1002/mds.10383

    Article  Google Scholar 

  36. Schabrun SM, Stinear CM, Byblow WD, Ridding MC (2009) Normalizing motor cortex representations in focal hand dystonia. Cereb Cortex 19:1968–1977. https://doi.org/10.1093/cercor/bhn224

    Article  PubMed  Google Scholar 

  37. Kawashima S, Ueki Y, Mima T et al (2013) Differences in dopaminergic modulation to motor cortical plasticity between Parkinson’s disease and multiple system atrophy. PLoS One 8:e62515. https://doi.org/10.1371/journal.pone.0062515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Conte A, Belvisi D, Bologna M et al (2012) Abnormal cortical synaptic plasticity in primary motor area in progressive supranuclear palsy. Cereb Cortex N Y N 22:693–700. https://doi.org/10.1093/cercor/bhr149

    Article  Google Scholar 

  39. Sławek J, Lass P, Derejko M, Dubaniewicz M (2001) Cerebral blood flow SPECT may be helpful in establishing the diagnosis of progressive supranuclear palsy and corticobasal degeneration. Nucl Med Rev Cent East Eur 4:73–76

    PubMed  Google Scholar 

  40. Plotkin M, Amthauer H, Klaffke S et al (2005) Combined 123I-FP-CIT and 123I-IBZM SPECT for the diagnosis of parkinsonian syndromes: study on 72 patients. J Neural Transm Vienna Austria 112:677–692. https://doi.org/10.1007/s00702-004-0208-x

    Article  CAS  Google Scholar 

  41. Hirano S, Shinotoh H, Shimada H et al (2010) Cholinergic imaging in corticobasal syndrome, progressive supranuclear palsy and frontotemporal dementia. Brain J Neurol 133:2058–2068. https://doi.org/10.1093/brain/awq120

    Article  Google Scholar 

  42. Heiss W-D, Herholz K (2006) Brain receptor imaging. J Nucl Med Off Publ Soc Nucl Med 47:302–312

    CAS  Google Scholar 

  43. Ukmar M, Moretti R, Torre P et al (2003) Corticobasal degeneration: structural and functional MRI and single-photon emission computed tomography. Neuroradiology 45:708–712. https://doi.org/10.1007/s00234-003-1058-1

    Article  CAS  PubMed  Google Scholar 

  44. Nagasawa H, Tanji H, Nomura H et al (1996) PET study of cerebral glucose metabolism and fluorodopa uptake in patients with corticobasal degeneration. J Neurol Sci 139:210–217

    Article  CAS  PubMed  Google Scholar 

  45. Cilia R, Marotta G, Benti R et al (2005) Brain SPECT imaging in multiple system atrophy. J Neural Transm Vienna Austria 112:1635–1645. https://doi.org/10.1007/s00702-005-0382-5

    Article  CAS  Google Scholar 

  46. Cilia R, Rossi C, Frosini D et al (2011) Dopamine transporter SPECT imaging in corticobasal syndrome. PLoS One 6:e18301. https://doi.org/10.1371/journal.pone.0018301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pirker S, Perju-Dumbrava L, Kovacs GG et al (2015) Progressive dopamine transporter binding loss in autopsy-confirmed corticobasal degeneration. J Park Dis 5:907–912. https://doi.org/10.3233/JPD-150625

    Article  CAS  Google Scholar 

  48. Pirker S, Perju-Dumbrava L, Kovacs GG et al (2013) Dopamine D2 receptor SPECT in corticobasal syndrome and autopsy-confirmed corticobasal degeneration. Parkinsonism Relat Disord 19:222–226. https://doi.org/10.1016/j.parkreldis.2012.10.010

    Article  PubMed  Google Scholar 

  49. Frisoni GB, Pizzolato G, Zanetti O et al (1995) Corticobasal degeneration: neuropsychological assessment and dopamine D2 receptor SPECT analysis. Eur Neurol 35:50–54

    Article  CAS  PubMed  Google Scholar 

  50. Hwang W-J, Yao W-J, Wey S-P et al (2002) Downregulation of striatal dopamine D2 receptors in advanced Parkinson’s disease contributes to the development of motor fluctuation. Eur Neurol 47:113–117. https://doi.org/10.1159/000047962

    Article  CAS  PubMed  Google Scholar 

  51. Kaasinen V, Ruottinen HM, Någren K et al (2000) Upregulation of putaminal dopamine D2 receptors in early Parkinson’s disease: a comparative PET study with [11C] raclopride and [11C] N-methylspiperone. J Nucl Med Off Publ Soc Nucl Med 41:65–70

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AAM Conception, design, and writing the first manuscript. MSJ Design, review, and critique.

Corresponding author

Correspondence to Mandar S. Jog.

Ethics declarations

Conflicts of interest

Dr. Murgai reports no disclosures relevant to manuscript. Dr. Jog receives speaker and consultant honoraria from Merz Pharmaceuticals, Allergan, AbbVie. He also receives research grants from CIHR, AMOSO, Allergan, Merz Pharmaceuticals, and Lawson Health Research Institute, and is part of the AGE-WELL Network of Centers of Excellence (NCE) of Canada program. From time to time, he serves on advisory boards of Allergan, Boston Scientific, AbbVie and Merz Pharmaceuticals.

Ethical approval

The authors confirm that the approval of an institutional review board was not required for this work. We also confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this work is consistent with those guidelines.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murgai, A.A., Jog, M.S. Neurophysiology and neurochemistry of corticobasal syndrome. J Neurol 265, 991–998 (2018). https://doi.org/10.1007/s00415-017-8731-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-017-8731-5

Keywords

Navigation