Journal of Neurology

, Volume 264, Issue 11, pp 2205–2214 | Cite as

Characterization of brain tumours with spin–spin relaxation: pilot case study reveals unique T 2 distribution profiles of glioblastoma, oligodendroglioma and meningioma

  • Cornelia LauleEmail author
  • Thorarin A. Bjarnason
  • Irene M. Vavasour
  • Anthony L. Traboulsee
  • G. R. Wayne Moore
  • David K. B. Li
  • Alex L. MacKay
Original Communication


Prolonged spin–spin relaxation times in tumour tissue have been observed since some of the earliest nuclear magnetic resonance investigations of the brain. Over the last three decades, numerous studies have sought to characterize tumour morphology and malignancy using quantitative assessment of T 2 relaxation times, although attempts to categorize and differentiate tumours have had limited success. However, previous work must be interpreted with caution as relaxation data were typically acquired using a variety of multiple echo sequences with a range of echoes and T 2 decay curves and were frequently fit with monoexponential analysis. We defined the distribution of T 2 components in three different human brain tumours (glioblastoma, oligodendroglioma, meningioma) using a multi-echo sequence with a greater number of echoes and a longer acquisition window than previously used (48 echoes, data collection out to 1120 ms) with no a priori assumptions about the number of exponential components contributing to the T 2 decay. T 2 relaxation times were increased in tumour tissue and each tumour showed a distinct T 2 distribution profile. Tumours have complex and unique compartmentalization characteristics. Quantitative assessment of T 2 relaxation in brain cancer may be useful in evaluating different grades of brain tumours on the basis of their T 2 distribution profile, and has the potential to be a non-invasive diagnostic tool which may also be useful in monitoring therapy. Further study with a larger sample size and varying grades of tumours is warranted.


Tumour MRI T2 relaxation Edema Glioblastoma Oligodendroglioma Meningioma 



Sincere thanks to the subjects, MRI technologists, neuropathologists and surgeons and the MS Society of Canada. Thank you to Katy Wyper for assistance with the literature search. CL was the recipient of the Women Against MS (WAMS) endMS Research and Training Network Transitional Career Development Award from the Multiple Sclerosis Society of Canada.

Compliance with ethical standards

Conflicts of interest

On behalf of all authors the corresponding author states that there is no relevant conflict of interest with respect to the content of this manuscript.

Ethical standards

This study was approved by the Clinical Research Ethics Board at the University of British Columbia with written informed consent obtained from all subjects in accordance with the Declaration of Helsinki of 1964 and its later amendments.


  1. 1.
    Parrish RG, Kurland RJ, Janese WW, Bakay L (1974) Proton relaxation rates of water in brain and brain tumors. Science 183(123):438–439CrossRefPubMedGoogle Scholar
  2. 2.
    Kjaer L, Thomsen C, Gjerris F, Mosdal B, Henriksen O (1991) Tissue characterization of intracranial tumors by MR imaging. In vivo evaluation of T1- and T2-relaxation behavior at 1.5 T. Acta Radiol 32(6):498–504CrossRefPubMedGoogle Scholar
  3. 3.
    Oh J, Cha S, Aiken AH, Han ET, Crane JC, Stainsby JA, Wright GA, Dillon WP, Nelson SJ (2005) Quantitative apparent diffusion coefficients and T2 relaxation times in characterizing contrast enhancing brain tumors and regions of peritumoral edema. J Magn Reson Imaging 21(6):701–708. doi: 10.1002/jmri.20335 CrossRefPubMedGoogle Scholar
  4. 4.
    Naruse S, Horikawa Y, Tanaka C, Hirakawa K, Nishikawa H, Yoshizaki K (1986) Signifcance of proton relaxation time measurement in brain oedema, cerebral infarction and brain tumors. Magn Reson Med 4:293–304Google Scholar
  5. 5.
    Martin-Landrove M, Figueroa G, Paluszny M, Torres W (2007) A quasi-analytical method for relaxation rate distribution determination of T2-weighted MRI in brain. Conf Proc IEEE Eng Med Biol Soc 2007:1318–1321. doi: 10.1109/iembs.2007.4352540 PubMedGoogle Scholar
  6. 6.
    Chatel M, Darcel F, de Certaines J, Benoist L, Bernard AM (1986) T1 and T2 proton nuclear magnetic resonance (NMR) relaxation times in vitro and human intracranial tumours. Results from 98 patients. J Neurooncol 3(4):315–321CrossRefPubMedGoogle Scholar
  7. 7.
    Ngo FQ, Bay JW, Kurland RJ, Weinstein MA, Hahn JF, Glassner BJ, Woolley CA, Dudley AW Jr, Ferrario CM, Meaney TF (1985) Magnetic resonance of brain tumors: considerations of imaging contrast on the basis of relaxation measurements. Magn Reson Imaging 3(2):145–155CrossRefPubMedGoogle Scholar
  8. 8.
    Rinck PA, Meindl S, Higer HP, Bieler EU, Pfannenstiel P (1985) Brain tumors: detection and typing by use of CPMG sequences and in vivo T2 measurements. Radiology 157(1):103–106CrossRefPubMedGoogle Scholar
  9. 9.
    Just M, Higer HP, Schwarz M, Bohl J, Fries G, Pfannenstiel P, Thelen M (1988) Tissue characterization of benign brain tumors: use of NMR-tissue parameters. Magn Reson Imaging 6(4):463–472CrossRefPubMedGoogle Scholar
  10. 10.
    Wilmes LJ, Hoehn-Berlage M, Els T, Bockhorst K, Eis M, Bonnekoh P, Hossmann KA (1993) In vivo relaxometry of three brain tumors in the rat: effect of Mn-TPPS, a tumor-selective contrast agent. J Magn Reson Imaging 3(1):5–12CrossRefPubMedGoogle Scholar
  11. 11.
    Eis M, Els T, Hoehn-Berlage M (1995) High resolution quantitative relaxation and diffusion MRI of three different experimental brain tumors in rat. Magn Reson Med 34(6):835–844CrossRefPubMedGoogle Scholar
  12. 12.
    Hoehn-Berlage M, Bockhorst K (1994) Quantitative magnetic resonance imaging of rat brain tumors: in vivo NMR relaxometry for the discrimination of normal and pathological tissues. Technol Health Care 2(4):247–254PubMedGoogle Scholar
  13. 13.
    Schad LR, Brix G, Zuna I, Harle W, Lorenz WJ, Semmler W (1989) Multiexponential proton spin–spin relaxation in MR imaging of human brain tumors. J Comput Assist Tomogr 13(4):577–587CrossRefPubMedGoogle Scholar
  14. 14.
    Rajan SS, Rosa L, Francisco J, Muraki A, Carvlin M, Tuturea E (1990) MRI characterization of 9L-glioma in rat brain at 4.7 Tesla. Magn Reson Imaging 8(2):185–190CrossRefPubMedGoogle Scholar
  15. 15.
    Hoehn-Berlage M, Tolxdorff T, Bockhorst K, Okada Y, Ernestus RI (1992) In vivo NMR T2 relaxation of experimental brain tumors in the cat: a multiparameter tissue characterization. Magn Reson Imaging 10(6):935–947CrossRefPubMedGoogle Scholar
  16. 16.
    Bockhorst K, Hoehn-Berlage M, Ernestus RI, Tolxdorf T, Hossmann KA (1993) NMR-contrast enhancement of experimental brain tumors with MnTPPS: qualitative evaluation by in vivo relaxometry. Magn Reson Imaging 11(5):655–663CrossRefPubMedGoogle Scholar
  17. 17.
    Larsson HB, Barker GJ, MacKay A (1998) Nuclear magnetic resonance relaxation in multiple sclerosis. J Neurol Neurosurg Psychiatry 64(Suppl 1):S70–S76PubMedGoogle Scholar
  18. 18.
    Does MD, Gore JC (2002) Compartmental study of T(1) and T(2) in rat brain and trigeminal nerve in vivo. Magn Reson Med 47(2):274–283CrossRefPubMedGoogle Scholar
  19. 19.
    Whittall KP, MacKay AL, Li DK (1999) Are mono-exponential fits to a few echoes sufficient to determine T2 relaxation for in vivo human brain? Magn Reson Med 41(6):1255–1257CrossRefPubMedGoogle Scholar
  20. 20.
    Dortch RD, Yankeelov TE, Yue Z, Quarles CC, Gore JC, Does MD (2009) Evidence of multiexponential T2 in rat glioblastoma. NMR Biomed 22(6):609–618. doi: 10.1002/nbm.1374 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ali TS, Bjarnason T, Sun Y, Lun X, Senger D, Forsyth P, Dunn J, Mitchell JR (2009) Is quantitative T2 sensitive to tumor cell infiltration?. International Society for Magnetic Resonance in Medicine, Stockholm, p 3163Google Scholar
  22. 22.
    Laule C, Kolind SH, Bjarnason TA, Li DK, Mackay AL (2007) In vivo multiecho T(2) relaxation measurements using variable TR to decrease scan time. Magn Reson Imaging 25(6):834–839CrossRefPubMedGoogle Scholar
  23. 23.
    Bjarnason TA, Mitchell JR (2010) AnalyzeNNLS: magnetic resonance multiexponential decay image analysis. J Magn Reson 206(2):200–204. doi: 10.1016/j.jmr.2010.07.008 CrossRefPubMedGoogle Scholar
  24. 24.
    Whittall KP, MacKay AL (1989) Quantitative interpretation of nmr relaxation data. J Magn Reson 84:134–152Google Scholar
  25. 25.
    Jones CK, Whittall KP, MacKay AL (2003) Robust myelin water quantification: averaging vs. spatial filtering. Magn Reson Med 50(1):206–209CrossRefPubMedGoogle Scholar
  26. 26.
    Efron B, Tibshirani RJ (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci 1:54–77CrossRefGoogle Scholar
  27. 27.
    Skinner MG, Kolind SH, Mackay AL (2007) The effect of varying echo spacing within a multiecho acquisition: better characterization of long T(2) components. Magn Reson Imaging 25(6):834–839CrossRefGoogle Scholar
  28. 28.
    MacKay A, Whittall K, Adler J, Li D, Paty D, Graeb D (1994) In vivo visualization of myelin water in brain by magnetic resonance. Magn Reson Med 31(6):673–677CrossRefPubMedGoogle Scholar
  29. 29.
    Russell-Schulz B, Laule C, Li DK, MacKay AL (2013) What causes the hyperintense T2-weighting and increased short T2 signal in the corticospinal tract? Magn Reson Imaging 31(3):329–335. doi: 10.1016/j.mri.2012.07.003 CrossRefPubMedGoogle Scholar
  30. 30.
    Engelhard HH, Stelea A, Cochran EJ (2002) Oligodendroglioma: pathology and molecular biology. Surg Neurol 58(2):111–117 (discussion 117) CrossRefPubMedGoogle Scholar
  31. 31.
    Manousaki M, Papadaki H, Papavdi A, Kranioti EF, Mylonakis P, Varakis J, Michalodimitrakis M (2011) Sudden unexpected death from oligodendroglioma: a case report and review of the literature. Am J Forensic Med Pathol 32(4):336–340. doi: 10.1097/PAF.0b013e3181d3dc86 CrossRefPubMedGoogle Scholar
  32. 32.
    Robertson DM, Vogel FS (1962) Concentric lamination of glial processes in oligodendrogliomas. J Cell Biol 15:313–334CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Liberski PP, Kordek R (1997) Ultrastructural pathology of glial brain tumors revisited: a review. Ultrastruct Pathol 21(1):1–31CrossRefPubMedGoogle Scholar
  34. 34.
    Liberski PP (1996) The ultrastructure of oligodendroglioma: personal experience and the review of the literature. Folia Neuropathol 34(4):206–211PubMedGoogle Scholar
  35. 35.
    Kamitani H, Masuzawa H, Sato J, Okada M (1986) Ultrastructure of concentric laminations in primary human brain tumors. Acta Neuropathol 71(1–2):83–87CrossRefPubMedGoogle Scholar
  36. 36.
    Hokama Y, Tanaka J, Nakamura H, Hori T (1986) MBP and GFAP immunohistochemistry of oligodendrogliomas with relationship to myelin-forming glia in cell differentiation. No To Shinkei 38(4):379–386PubMedGoogle Scholar
  37. 37.
    Sirrs SM, Laule C, Maedler B, Brief EE, Tahir SA, Bishop C, MacKay AL (2007) Normal appearing white matter in subjects with phenylketonuria: water content, myelin water fraction, and metabolite concentrations. Radiology 242(1):236–243CrossRefPubMedGoogle Scholar
  38. 38.
    Laule C, Vavasour IM, Madler B, Kolind SH, Sirrs SM, Brief EE, Traboulsee AL, Moore GR, Li DK, Mackay AL (2007) MR evidence of long T(2) water in pathological white matter. J Magn Reson Imaging 26(4):1117–1121CrossRefPubMedGoogle Scholar
  39. 39.
    Crome L (1962) The association of phenylketonuria with leucodystrophy. J Neurol Neurosurg Psychiatry 25:149–153CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Crome L, Pare CMB (1960) Phenylketonuria. J Ment Sci 106:S62Google Scholar
  41. 41.
    Malamud N (1966) Neuropathology of phenylketonuria. J Neuropathol Exp Neurol 25(2):254–268CrossRefPubMedGoogle Scholar
  42. 42.
    Eimoto T, Hashimoto K (1977) Vacuolated meningioma. A light and electron microscopic study. Acta Pathol Jpn 27(4):557–566PubMedGoogle Scholar
  43. 43.
    Yoshida T, Hirato J, Sasaki A, Yokoo H, Nakazato Y, Kurachi H (1999) Intranuclear inclusions of meningioma associated with abnormal cytoskeletal protein expression. Brain Tumor Pathol 16(2):86–91CrossRefPubMedGoogle Scholar
  44. 44.
    Ito H, Kawano N, Yada K, Kameya T (1991) Meningiomas differentiating to arachnoid trabecular cells: a proposal for histological subtype “arachnoid trabecular cell meningioma”. Acta Neuropathol 82(5):327–330CrossRefPubMedGoogle Scholar
  45. 45.
    Yamashima T, Kida S, Yamamoto S (1988) Ultrastructural comparison of arachnoid villi and meningiomas in man. Mod Pathol 1(3):224–234PubMedGoogle Scholar
  46. 46.
    Englund E, Brun A, Larsson EM, Gyorffy-Wagner Z, Persson B (1986) Tumours of the central nervous system. Proton magnetic resonance relaxation times T1 and T2 and histopathologic correlates. Acta Radiol Diagn (Stockh) 27(6):653–659CrossRefGoogle Scholar
  47. 47.
    Menon RS, Rusinko MS, Allen PS (1992) Proton relaxation studies of water compartmentalization in a model neurological system. Magn Reson Med 28(2):264–274CrossRefPubMedGoogle Scholar
  48. 48.
    Does MD, Snyder RE (1995) T2 relaxation of peripheral nerve measured in vivo. Magn Reson Imaging 13(4):575–580CrossRefPubMedGoogle Scholar
  49. 49.
    Does MD, Snyder RE (1996) Multiexponential T2 relaxation in degenerating peripheral nerve. Magn Reson Med 35(2):207–213CrossRefPubMedGoogle Scholar
  50. 50.
    Laule C, Vavasour IM, Kolind SH, Traboulsee AL, Moore GRW, Li DKB, MacKay AL (2007) Long T2 water in multiple sclerosis: what else can we learn from multi-echo T2 relaxation? J Neurol 254(11):1579–1587CrossRefPubMedGoogle Scholar
  51. 51.
    Whittall KP, MacKay AL, Li DK, Vavasour IM, Jones CK, Paty DW (2002) Normal-appearing white matter in multiple sclerosis has heterogeneous, diffusely prolonged T(2). Magn Reson Med 47(2):403–408CrossRefPubMedGoogle Scholar
  52. 52.
    Jenkinson MD, du Plessis DG, Smith TS, Brodbelt AR, Joyce KA, Walker C (2010) Cellularity and apparent diffusion coefficient in oligodendroglial tumours characterized by genotype. J Neurooncol 96(3):385–392. doi: 10.1007/s11060-009-9970-9 CrossRefPubMedGoogle Scholar
  53. 53.
    Deng Z, Yan Y, Zhong D, Yang G, Tang W, Lu F, Xie B, Liu B (2010) Quantitative analysis of glioma cell invasion by diffusion tensor imaging. J Clin Neurosci 17(12):1530–1536. doi: 10.1016/j.jocn.2010.03.060 CrossRefPubMedGoogle Scholar
  54. 54.
    Prasloski T, Rauscher A, MacKay AL, Hodgson M, Vavasour IM, Laule C, Madler B (2012) Rapid whole cerebrum myelin water imaging using a 3D GRASE sequence. Neuroimage 63(1):533–539. doi: 10.1016/j.neuroimage.2012.06.064 CrossRefPubMedGoogle Scholar
  55. 55.
    Tsolaki E, Kousi E, Svolos P, Kapsalaki E, Theodorou K, Kappas C, Tsougos I (2014) Clinical decision support systems for brain tumor characterization using advanced magnetic resonance imaging techniques. World J Radiol 6(4):72–81. doi: 10.4329/wjr.v6.i4.72 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Roy B, Gupta RK, Maudsley AA, Awasthi R, Sheriff S, Gu M, Husain N, Mohakud S, Behari S, Pandey CM, Rathore RK, Spielman DM, Alger JR (2013) Utility of multiparametric 3-T MRI for glioma characterization. Neuroradiology 55(5):603–613. doi: 10.1007/s00234-013-1145-x CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Zhang H, Tan Y, Wang XC, Qing JB, Wang L, Wu XF, Zhang L, Liu QW (2013) Susceptibility-weighted imaging: the value in cerebral astrocytomas grading. Neurol India 61(4):389–395. doi: 10.4103/0028-3886.117617 CrossRefPubMedGoogle Scholar
  58. 58.
    Ma L, Song ZJ (2013) Differentiation between low-grade and high-grade glioma using combined diffusion tensor imaging metrics. Clin Neurol Neurosurg 115(12):2489–2495. doi: 10.1016/j.clineuro.2013.10.003 CrossRefPubMedGoogle Scholar
  59. 59.
    Einstein DB, Wessels B, Bangert B, Fu P, Nelson AD, Cohen M, Sagar S, Lewin J, Sloan A, Zheng Y, Williams J, Colussi V, Vinkler R, Maciunas R (2012) Phase II trial of radiosurgery to magnetic resonance spectroscopy-defined high-risk tumor volumes in patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys 84(3):668–674. doi: 10.1016/j.ijrobp.2012.01.020 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.RadiologyUniversity of British ColumbiaVancouverCanada
  2. 2.Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverCanada
  3. 3.Blusson Spinal Cord Centre/ICORD (International Collaboration on Repair Discoveries)VancouverCanada
  4. 4.Diagnostic Imaging ServicesInterior HealthKelownaCanada
  5. 5.PhysicsUniversity of British Columbia OkanaganKelownaCanada
  6. 6.MedicineUniversity of British ColumbiaVancouverCanada
  7. 7.UBC MRI Research CentreUniversity of British ColumbiaVancouverCanada
  8. 8.Physics and AstronomyUniversity of British ColumbiaVancouverCanada

Personalised recommendations