Magnetic vestibular stimulation influences resting-state fluctuations and induces visual-vestibular biases

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Schenck JF (1992) Health and physiological effects of human exposure to whole-body 4-T magnetic fields during MRI. Ann N Y Acad Sci 649:285–301. doi:10.1111/j.1749-6632.1992.tb49617.x

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Roberts DC, Marcelli V, Gillen JS et al (2011) MRI magnetic field stimulates rotational sensors of the brain. Curr Biol 21:1635–1640. doi:10.1016/j.cub.2011.08.029

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Boegle R, Stephan T, Ertl M et al (2016) Magnetic vestibular stimulation modulates default mode network fluctuations. Neuroimage 127:409–421. doi:10.1016/j.neuroimage.2015.11.065

    Article  PubMed  Google Scholar 

  4. 4.

    Klingner CM, Volk GF, Brodoehl S et al (2014) Disrupted functional connectivity of the default mode network due to acute vestibular deficit. Neuroimage Clin 6:109–114. doi:10.1016/j.nicl.2014.08.022

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Göttlich M, Jandl NM, Wojak JF et al (2014) Altered resting-state functional connectivity in patients with chronic bilateral vestibular failure. Neuroimage Clin 4:488–499. doi:10.1016/j.nicl.2014.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Helmchen C, Ye Z, Sprenger A, Münte TF (2014) Changes in resting-state fMRI in vestibular neuritis. Brain Struct Funct. doi:10.1007/s00429-013-0608-5

    PubMed  Google Scholar 

  7. 7.

    Stephan T, Deutschländer A, Nolte A et al (2005) Functional MRI of galvanic vestibular stimulation with alternating currents at different frequencies. Neuroimage 26:721–732. doi:10.1016/j.neuroimage.2005.02.049

    Article  PubMed  Google Scholar 

  8. 8.

    Dieterich M, Bense S, Lutz S et al (2003) Dominance for Vestibular Cortical Function in the Non-dominant Hemisphere. Cereb Cortex 13:994–1007. doi:10.1093/cercor/13.9.994

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Lopez C, Blanke O, Mast FW (2012) The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysis. Neuroscience 212:159–179. doi:10.1016/j.neuroscience.2012.03.028

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Zu Eulenburg P, Caspers S, Roski C, Eickhoff SB (2012) Meta-analytical definition and functional connectivity of the human vestibular cortex. Neuroimage 60:162–169. doi:10.1016/j.neuroimage.2011.12.032

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Smith PF, Zheng Y (2013) From ear to uncertainty: vestibular contributions to cognitive function. Front Integr Neurosci 7:84. doi:10.3389/fnint.2013.00084

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Brandt T, Strupp M, Dieterich M (2014) Towards a concept of disorders of “higher vestibular function”. Front Integr Neurosci 8:47. doi:10.3389/fnint.2014.00047

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Partially funded by the German Research Foundation (DFG) for the Graduate School of Systemic Neurosciences (GSN) and the Research Training Group (RTG 2175), the German Foundation for Neurology (DSN), and the German Federal Ministry of Education and Research (German Center for Vertigo and Balance Disorders, Grant code 01EO140).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rainer Boegle.

Ethics declarations

Conflicts of interest

The authors declare they have no conflicts of interest.

Ethical standards

All experiments have been approved by the internal review board of the LMU and all subjects gave their written consent on taking part in the study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boegle, R., Ertl, M., Stephan, T. et al. Magnetic vestibular stimulation influences resting-state fluctuations and induces visual-vestibular biases. J Neurol 264, 999–1001 (2017). https://doi.org/10.1007/s00415-017-8447-6

Download citation

Keywords

  • Default Mode Network
  • Independent Component Analysis
  • Slow Phase Velocity
  • Posterior Insula
  • Visual Network