Advertisement

Journal of Neurology

, Volume 264, Issue 5, pp 862–874 | Cite as

The spectrum of magnetic resonance findings in cerebrotendinous xanthomatosis: redefinition and evidence of new markers of disease progression

  • Andrea Mignarri
  • Maria Teresa DottiEmail author
  • Antonio Federico
  • Nicola De Stefano
  • Marco Battaglini
  • Irene Grazzini
  • Paolo Galluzzi
  • Lucia Monti
Original Communication

Abstract

Cerebrotendinous xanthomatosis (CTX) is a metabolic disease characterized by systemic signs and neurological impairment, which can be prevented if chenodeoxycholic acid (CDCA) treatment is started early. Despite brain MRI represents an essential diagnostic tool, the spectrum of findings is worth to be reappraised, and follow-up data are needed. We performed clinical evaluation and brain MRI in 38 CTX patients. Sixteen of them who were untreated at baseline examination underwent clinical and MRI follow-up after long-term treatment with CDCA. Brain MRI abnormalities included cortical and cerebellar atrophy, and T2W/FLAIR hyperintensity involving subcortical, periventricular, and cerebellar white matter, the brainstem and the dentate nuclei. Regarding the dentate nuclei, we also observed T1W/FLAIR hypointensity consistent with cerebellar vacuolation and T1W/FLAIR/SW hypointense alterations compatibly with calcification in a subgroup of patients. Long-term follow-up showed that clinical and neuroradiological stability or progression were almost invariably associated. In patients with cerebellar vacuolation at baseline, a worsening over time was observed, while subjects lacking vacuoles were clinically and neuroradiologically stable at follow-up. The brains of CTX patients very often show both supratentorial and infratentorial abnormalities at MRI, the latter being related to clinical disability and including a wide spectrum of dentate nuclei alterations. The presence of cerebellar vacuolation may be regarded as a useful biomarker of disease progression and unsatisfactory response to therapy. On the other hand, the absence of dentate nuclei signal alteration should be considered an indicator of better prognosis.

Keywords

Cerebrotendinous xanthomatosis MRI Dentate nuclei Cerebellar vacuolation Chenodeoxycholic acid 

Notes

Compliance with ethical standards

Conflicts of interest

We declare that we have no conflicts of interest.

Funding

We declare no funding.

Ethical standard

This study has been approved by the appropriate ethics committee and has therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki.

References

  1. 1.
    Cali JJ, Russell DW (1991) Characterization of human sterol 27-hydroxylase. A mitochondrial cytochrome P-450 that catalyzes multiple oxidation reaction in bile acid biosynthesis. J Biol Chem 266:7774–7778PubMedGoogle Scholar
  2. 2.
    Mignarri A, Magni A, Del Puppo M et al (2016) Evaluation of cholesterol metabolism in cerebrotendinous xanthomatosis. J Inherit Metab Dis 39:75–83CrossRefPubMedGoogle Scholar
  3. 3.
    Mignarri A, Gallus GN, Dotti MT, Federico A (2014) A suspicion index for early diagnosis and treatment of cerebrotendinous xanthomatosis. J Inherit Metab Dis 37:421–429CrossRefPubMedGoogle Scholar
  4. 4.
    Panzenboeck U, Andersson U, Hansson M, Sattler W, Meaney S, Björkhem I (2007) On the mechanism of cerebral accumulation of cholestanol in patients with cerebrotendinous xanthomatosis. J Lipid Res 48:1167–1174CrossRefPubMedGoogle Scholar
  5. 5.
    Inoue K, Kubota S, Seyama Y (1999) Cholestanol induces apoptosis of cerebellar neuronal cells. Biochem Biophys Res Commun 256:198–203CrossRefPubMedGoogle Scholar
  6. 6.
    Soffer D, Benharroch D, Berginer V (1995) The neuropathology of cerebrotendinous xanthomatosis revisited: a case report and review of the literature. Acta Neuropathol 90:213–220CrossRefPubMedGoogle Scholar
  7. 7.
    Barkhof F, Verrips A, Wesseling P et al (2000) Cerebrotendinous xanthomatosis: the spectrum of imaging findings and the correlation with neuropathologic findings. Radiology 217:869–876CrossRefPubMedGoogle Scholar
  8. 8.
    Pilo de la Fuente B, Ruiz I, Lopez de Munain A, Jimenez-Escrig A (2008) Cerebrotendinous xanthomatosis: neuropathological findings. J Neurol 255:839–842CrossRefPubMedGoogle Scholar
  9. 9.
    Wallon D, Guyant-Maréchal L, Laquerrière A et al (2010) Clinical imaging and neuropathological correlations in an unusual case of cerebrotendinous xanthomatosis. Clin Neuropathol 29:361–364CrossRefPubMedGoogle Scholar
  10. 10.
    Yahalom G, Tsabari R, Molshatzki N, Ephraty L, Cohen H, Hassin-Baer S (2013) Neurological outcome in cerebrotendinous xanthomatosis treated with chenodeoxycholic acid: early versus late diagnosis. Clin Neuropharmacol 36:78–83CrossRefPubMedGoogle Scholar
  11. 11.
    Berginer VM, Salen G, Shefer S (1984) Long-term treatment of cerebrotendinous xanthomatosis with chenodeoxycholic acid. N Engl J Med 311:1649–1652CrossRefPubMedGoogle Scholar
  12. 12.
    Pilo de la Fuente B, Jimenez-Escrig A, Lorenzo JR et al (2011) Cerebrotendinous xanthomatosis in Spain: clinical, prognostic, and genetic survey. Eur J Neurol 18:1203–1211CrossRefPubMedGoogle Scholar
  13. 13.
    Rubio-Agusti I, Kojovic M, Edwards MJ et al (2012) Atypical parkinsonism and cerebrotendinous xanthomatosis: report of a family with corticobasal syndrome and a literature review. Mov Disord 27:1769–1774CrossRefPubMedGoogle Scholar
  14. 14.
    Pedley TA, Emerson RG, Warner CL, Rowland LP, Salen G (1985) Treatment of cerebrotendinous xanthomatosis with chenodeoxycholic acid. Ann Neurol 18:517–518CrossRefPubMedGoogle Scholar
  15. 15.
    Swanson PD, Cromwell LD (1986) Magnetic resonance imaging in cerebrotendinous xanthomatosis. Neurology 36:124–126CrossRefPubMedGoogle Scholar
  16. 16.
    Bencze KS, Vande Polder DR, Prockop LD (1990) Magnetic resonance imaging of the brain and spinal cord in cerebrotendinous xanthomatosis. J Neurol Neurosurg Psychiatry 53:166–167CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fiorelli M, Di Piero V, Bastianello S, Bozzao L, Federico A (1990) Cerebrotendinous xanthomatosis: clinical and MRI study (a case report). J Neurol Neurosurg Psychiatry 53:76–78CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hokezu Y, Kuriyama M, Kubota R, Nakagawa M, Fujiyama J, Osame M (1992) Cerebrotendinous xanthomatosis: cranial CT and MRI studies in eight patients. Neuroradiology 34:308–312CrossRefPubMedGoogle Scholar
  19. 19.
    Berginer VM, Berginer J, Korczyn AD, Tadmor R (1994) Magnetic resonance imaging in cerebrotendinous xanthomatosis: a prospective clinical and neuroradiological study. J Neurol Sci 122:102–108CrossRefPubMedGoogle Scholar
  20. 20.
    Dotti MT, Federico A, Signorini E et al (1994) Cerebrotendinous xanthomatosis (van Bogaert–Scherer–Epstein disease): CT and MR findings. AJNR Am J Neuroradiol 15:1721–1726PubMedGoogle Scholar
  21. 21.
    De Stefano N, Dotti MT, Mortilla M, Federico A (2001) Magnetic resonance imaging and spectroscopic changes in brains of patients with cerebrotendinous xanthomatosis. Brain 124:121–131CrossRefPubMedGoogle Scholar
  22. 22.
    Lionnet C, Carra C, Ayrignac X et al (2014) Cerebrotendinous xanthomatosis: a multicentric retrospective study of 15 adults, clinical and paraclinical typical and atypical aspects. Rev Neurol (Paris) 170:445–453CrossRefGoogle Scholar
  23. 23.
    Inglese M, De Stefano N, Pagani E et al (2003) Quantification of brain damage in cerebrotendinous xanthomatosis with magnetization transfer MR imaging. AJNR Am J Neuroradiol 24:495–500PubMedGoogle Scholar
  24. 24.
    Guerrera S, Stromillo ML, Mignarri A et al (2010) Clinical relevance of brain volume changes in patients with cerebrotendinous xanthomatosis. J Neurol Neurosurg Psychiatry 81:1189–1193CrossRefPubMedGoogle Scholar
  25. 25.
    Mignarri A, Dotti MT, Del Puppo M et al (2012) Cerebrotendinous xanthomatosis with progressive cerebellar vacuolation: 6-year MRI follow-up. Neuroradiology 54:649–651CrossRefPubMedGoogle Scholar
  26. 26.
    van Swieten JC, Koudstaal PJ, Visser MC et al (1988) Interobserver agreement for the assessment of handicap in stroke patients. Stroke 19:604–607CrossRefPubMedGoogle Scholar
  27. 27.
    Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452CrossRefPubMedGoogle Scholar
  28. 28.
    Androdias G, Vukusic S, Gignoux L et al (2012) Leukodystrophy with a cerebellar cystic aspect and intracranial atherosclerosis: an atypical presentation of cerebrotendinous xanthomatosis. J Neurol 259:364–366CrossRefPubMedGoogle Scholar
  29. 29.
    Koziol LF, Budding D, Andreasen N et al (2014) Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum 13:151–177CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Andrea Mignarri
    • 1
  • Maria Teresa Dotti
    • 1
    Email author
  • Antonio Federico
    • 1
  • Nicola De Stefano
    • 1
  • Marco Battaglini
    • 1
  • Irene Grazzini
    • 2
  • Paolo Galluzzi
    • 2
  • Lucia Monti
    • 2
  1. 1.Unit of Neurology and Neurometabolic Disorders, Department of Medicine, Surgery and NeurosciencesUniversity of SienaSienaItaly
  2. 2.Unit of Diagnostic and Therapeutic NeuroradiologyAzienda Ospedaliera SienaSienaItaly

Personalised recommendations