Gastaut H, Caveness W, Landolt H et al (1964) A proposed international classification of epileptic seizures. Epilepsia 5:297–306. doi:10.1111/j.1528-1157.1964.tb03337.x
Article
Google Scholar
Merlis JK (1970) Proposal for an international classification of the epilepsies. Epilepsia 11:114–119. doi:10.1111/j.1528-1157.1970.tb03873.x
CAS
PubMed
Article
Google Scholar
Commission on Classification and Terminology of the International League Against Epilepsy (1981) Proposal for revised clinical and electroencephalographic classification of epileptic seizures. Epilepsia 22:489–501. doi:10.1111/j.1528-1157.1981.tb06159.x
Article
Google Scholar
Engel J (2001) A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE task force on classification and terminology. Epilepsia 42:796–803. doi:10.1046/j.1528-1157.2001.10401.x
PubMed
Article
Google Scholar
Berg AT, Berkovic SF, Brodie MJ et al (2010) Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 51:676–685. doi:10.1111/j.1528-1167.2010.02522.x
PubMed
Article
Google Scholar
Scheffer IE, French J, Hirsch E et al (2016) Classification of the epilepsies: new concepts for discussion and debate-special report of the ILAE Classification Task Force of the Commission for Classification and Terminology. Epilepsia Open 1:37–44. doi:10.1002/epi4.5
Article
Google Scholar
Fisher RS, Acevedo C, Arzimanoglou A et al (2014) ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55:475–482. doi:10.1111/epi.12550
PubMed
Article
Google Scholar
Krumholz A, Wiebe S, Gronseth GS et al (2015) Evidence-based guideline: management of an unprovoked first seizure in adults: Report of the Guideline Development Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology 84:1705–1713. doi:10.1212/WNL.0000000000001487
PubMed
PubMed Central
Article
Google Scholar
Lugaresi E, Cirignotta F, Montagna P (1986) Nocturnal paroxysmal dystonia. J Neurol Neurosurg Psychiatry 49:375–380. doi:10.1136/JNNP.49.4.375
CAS
PubMed
PubMed Central
Article
Google Scholar
Tinuper P, Cerullo A, Cirignotta F et al (1990) Nocturnal paroxysmal dystonia with short-lasting attacks: three cases with evidence for an epileptic frontal lobe origin of seizures. Epilepsia 31:549–556. doi:10.1111/j.1528-1157.1990.tb06105.x
CAS
PubMed
Article
Google Scholar
Parrino L, Halasz P, Tassinari CA, Terzano MG (2006) CAP, epilepsy and motor events during sleep: the unifying role of arousal. Sleep Med Rev 10:267–285. doi:10.1016/j.smrv.2005.12.004
PubMed
Article
Google Scholar
Trinka E, Cock H, Hesdorffer D et al (2015) A definition and classification of status epilepticus: report of the ILAE task force on classification of status epilepticus. Epilepsia 56:1515–1523. doi:10.1111/epi.13121
PubMed
Article
Google Scholar
Treiman DM, Walton NY, Kendrick C (1990) A progressive sequence of electroencephalographic changes during generalized convulsive status epilepticus. Epilepsy Res 5:49–60. doi:10.1016/0920-1211(90)90065-4
CAS
PubMed
Article
Google Scholar
Treiman DM, Meyers PD, Walton NY et al (1998) A comparison of four treatments for generalized convulsive status epilepticus. N Engl J Med 339:792–798. doi:10.1056/NEJM199809173391202
CAS
PubMed
Article
Google Scholar
Welch RD, Nicholas K, Durkalski-Mauldin VL et al (2015) Intramuscular midazolam versus intravenous lorazepam for the prehospital treatment of status epilepticus in the pediatric population. Epilepsia 56:254–262. doi:10.1111/epi.12905
CAS
PubMed
PubMed Central
Article
Google Scholar
Silbergleit R, Durkalski V, Lowenstein D et al (2012) Intramuscular versus intravenous therapy for prehospital status epilepticus. N Engl J Med 366:591–600. doi:10.1056/NEJMoa1107494
CAS
PubMed
PubMed Central
Article
Google Scholar
Kapur J, Macdonald RL (1997) Rapid seizure-induced reduction of benzodiazepine and Zn 2+ sensitivity of hippocampal dentate granule cell GABA A receptors. J Neurosci 17:7532–7540
CAS
PubMed
PubMed Central
Google Scholar
Kapur J, Stringer JL, Lothman EW (1989) Evidence that repetitive seizures in the hippocampus cause a lasting reduction of GABAergic inhibition. J Neurophysiol 61:417–426
CAS
PubMed
Google Scholar
Goodkin HP, Joshi S, Mtchedlishvili Z et al (2008) Subunit-specific trafficking of GABA(A) receptors during status epilepticus. J Neurosci 28:2527–2538. doi:10.1523/JNEUROSCI.3426-07.2008
CAS
PubMed
PubMed Central
Article
Google Scholar
Naylor DE (2005) Trafficking of GABAA receptors, loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus. J Neurosci 25:7724–7733. doi:10.1523/JNEUROSCI.4944-04.2005
CAS
PubMed
Article
Google Scholar
Naylor DE, Liu H, Niquet J, Wasterlain CG (2013) Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus. Neurobiol Dis 54:225–238. doi:10.1016/j.nbd.2012.12.015
CAS
PubMed
PubMed Central
Article
Google Scholar
Löscher W (2015) Single versus combinatorial therapies in status epilepticus: novel data from preclinical models. Epilepsy Behav 49:20–25. doi:10.1016/j.yebeh.2015.02.027
PubMed
Article
Google Scholar
Trinka E (2011) What is the evidence to use new intravenous AEDs in status epilepticus? Epilepsia 52:35–38. doi:10.1111/j.1528-1167.2011.03232.x
CAS
PubMed
Article
Google Scholar
Navarro V, Dagron C, Elie C et al (2016) Prehospital treatment with levetiracetam plus clonazepam or placebo plus clonazepam in status epilepticus (SAMUKeppra): a randomised, double-blind, phase 3 trial. Lancet Neurol 15:47–55. doi:10.1016/S1474-4422(15)00296-3
CAS
PubMed
Article
Google Scholar
Shorvon S, Ferlisi M (2011) The treatment of super-refractory status epilepticus: a critical review of available therapies and a clinical treatment protocol. Brain 134:2802–2818. doi:10.1093/brain/awr215
PubMed
Article
Google Scholar
Shorvon S, Ferlisi M (2012) The outcome of therapies in refractory and super-refractory convulsive status epilepticus and recommendations for therapy. Brain 135:2314–2328. doi:10.1093/brain/aws091
PubMed
Article
Google Scholar
Yasiry Z, Shorvon SD (2014) The relative effectiveness of five antiepileptic drugs in treatment of benzodiazepine-resistant convulsive status epilepticus: a meta-analysis of published studies. Seizure 23:167–174. doi:10.1016/j.seizure.2013.12.007
PubMed
Article
Google Scholar
Malamiri RA, Ghaempanah M, Khosroshahi N et al (2012) Efficacy and safety of intravenous sodium valproate versus phenobarbital in controlling convulsive status epilepticus and acute prolonged convulsive seizures in children: a randomised trial. Eur J Paediatr Neurol 16:536–541. doi:10.1016/j.ejpn.2012.01.012
PubMed
Article
Google Scholar
Su Y, Liu G, Tian F et al (2016) Phenobarbital versus valproate for generalized convulsive status epilepticus in adults: a prospective randomized controlled trial in China. CNS Drugs 30:1201–1207. doi:10.1007/s40263-016-0388-6
CAS
PubMed
Article
Google Scholar
Vardhan Gupta H, Kaur G, Chawla R et al (2015) comparative assessment for the efficacy of valproate and phenytoin for controlling seizures in patients of convulsive status epilepticus: a randomized controlled trial. J Adv Med Dent Sci Res 3:S15–S20
Google Scholar
Shekh-Ahmad T, Mawasi H, McDonough JH et al (2015) The potential of sec-butylpropylacetamide (SPD) and valnoctamide and their individual stereoisomers in status epilepticus. Epilepsy Behav 49:298–302. doi:10.1016/j.yebeh.2015.04.012
PubMed
Article
Google Scholar
Bleck T, Cock H, Chamberlain J et al (2013) The established status epilepticus trial 2013. Epilepsia 54:89–92. doi:10.1111/epi.12288
CAS
PubMed
PubMed Central
Article
Google Scholar
Legriel S, Pico F, Tran-Dinh Y-R et al (2016) Neuroprotective effect of therapeutic hypothermia versus standard care alone after convulsive status epilepticus: protocol of the multicentre randomised controlled trial HYBERNATUS. Ann Intensiv Care 6:54. doi:10.1186/s13613-016-0159-z
Article
Google Scholar
Johnson JW, Glasgow NG, Povysheva NV (2015) Recent insights into the mode of action of memantine and ketamine. Curr Opin Pharmacol 20:54–63. doi:10.1016/j.coph.2014.11.006
CAS
PubMed
Article
Google Scholar
Synowiec AS, Singh DS, Yenugadhati V et al (2013) Ketamine use in the treatment of refractory status epilepticus. Epilepsy Res 105:183–188. doi:10.1016/j.eplepsyres.2013.01.007
CAS
PubMed
Article
Google Scholar
Hoefler J, Rohracher A, Kalss G et al (2016) (S)-Ketamine in refractory and super-refractory status epilepticus: a retrospective study. CNS Drugs 30:869–876. doi:10.1007/s40263-016-0371-2
CAS
Article
Google Scholar
Gaspard N, Foreman B, Judd LM et al (2013) Intravenous ketamine for the treatment of refractory status epilepticus: a retrospective multicenter study. Epilepsia 54:1498–1503. doi:10.1111/epi.12247
CAS
PubMed
PubMed Central
Article
Google Scholar
Rosati A, Ilvento L, L’Erario M et al (2016) Efficacy of ketamine in refractory convulsive status epilepticus in children: a protocol for a sequential design, multicentre, randomised, controlled, open-label, non-profit trial (KETASER01). BMJ Open 6:e011565. doi:10.1136/bmjopen-2016-011565
PubMed
PubMed Central
Article
Google Scholar
Legriel S, Lemiale V, Schenck M et al (2016) Hypothermia for neuroprotection in convulsive status epilepticus. N Engl J Med 375:2457–2467. doi:10.1056/NEJMoa1608193
PubMed
Article
Google Scholar
Irani SR, Alexander S, Waters P et al (2010) Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain 133:2734–2748. doi:10.1093/brain/awq213
PubMed
PubMed Central
Article
Google Scholar
Titulaer MJ, McCracken L, Gabilondo I et al (2013) Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 12:157–165. doi:10.1016/S1474-4422(12)70310-1
CAS
PubMed
PubMed Central
Article
Google Scholar
Dogan Onugoren M, Deuretzbacher D, Haensch CA et al (2015) Limbic encephalitis due to GABAB and AMPA receptor antibodies: a case series. J Neurol Neurosurg Psychiatry 86:965–972. doi:10.1136/jnnp-2014-308814
CAS
PubMed
Article
Google Scholar
Irani SR, Michell AW, Lang B et al (2011) Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol 69:892–900. doi:10.1002/ana.22307
PubMed
Article
Google Scholar
Wagner J, Schoene-Bake J-C, Malter MP et al (2013) Quantitative FLAIR analysis indicates predominant affection of the amygdala in antibody-associated limbic encephalitis. Epilepsia 54:1679–1687. doi:10.1111/epi.12320
PubMed
Article
Google Scholar
Irani SR, Stagg CJ, Schott JM et al (2013) Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype. Brain 136:3151–3162. doi:10.1093/brain/awt212
PubMed
Article
Google Scholar
Bien CG, Urbach H, Schramm J et al (2007) Limbic encephalitis as a precipitating event in adult-onset temporal lobe epilepsy. Neurology 69:1236–1244. doi:10.1212/01.wnl.0000276946.08412.ef
CAS
PubMed
Article
Google Scholar
Vanli-Yavuz EN, Erdag E, Tuzun E et al (2016) Neuronal autoantibodies in mesial temporal lobe epilepsy with hippocampal sclerosis. J Neurol Neurosurg Psychiatry 87:684–692. doi:10.1136/jnnp-2016-313146
PubMed
Article
Google Scholar
Brenner T, Sills GJ, Hart Y et al (2013) Prevalence of neurologic autoantibodies in cohorts of patients with new and established epilepsy. Epilepsia 54:1028–1035. doi:10.1111/epi.12127
PubMed
Article
Google Scholar
Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342:314–319. doi:10.1056/NEJM200002033420503
CAS
PubMed
Article
Google Scholar
Brodie MJ (2016) Outcomes in newly diagnosed epilepsy in adolescents and adults: insights across a generation in Scotland. Seizure. doi:10.1016/j.seizure.2016.08.010
PubMed
Google Scholar
Callaghan B, Schlesinger M, Rodemer W et al (2011) Remission and relapse in a drug-resistant epilepsy population followed prospectively. Epilepsia 52:619–626. doi:10.1111/j.1528-1167.2010.02929.x
PubMed
PubMed Central
Article
Google Scholar
Luciano AL, Shorvon SD (2007) Results of treatment changes in patients with apparently drug-resistant chronic epilepsy. Ann Neurol 62:375–381. doi:10.1002/ana.21064
CAS
PubMed
Article
Google Scholar
Choi H, Heiman G, Pandis D et al (2008) Seizure remission and relapse in adults with intractable epilepsy: a cohort study. Epilepsia 49:1440–1445. doi:10.1111/j.1528-1167.2008.01601.x
PubMed
PubMed Central
Article
Google Scholar
Coulter DA, Huguenard JR, Prince DA (1989) Characterization of ethosuximide reduction of low-threshold calcium current in thalamic neurons. Ann Neurol 25:582–593. doi:10.1002/ana.410250610
CAS
PubMed
Article
Google Scholar
Jasper H, Kershman J, Gibbs FA et al (1941) Electroencephalographic classification of the epilepsies. Arch Neurol Psychiatry 45:903. doi:10.1001/archneurpsyc.1941.02280180015001
Article
Google Scholar
Glauser TA, Cnaan A, Shinnar S et al (2010) Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy. N Engl J Med 362:790–799. doi:10.1056/NEJMoa0902014
CAS
PubMed
PubMed Central
Article
Google Scholar
Berg AT, Levy SR, Testa FM, Blumenfeld H (2014) Long-term seizure remission in childhood absence epilepsy: might initial treatment matter? Epilepsia 55:551–557. doi:10.1111/epi.12551
PubMed
PubMed Central
Article
Google Scholar
Bomben VC, Aiba I, Qian J et al (2016) Isolated P/Q calcium channel deletion in layer VI corticothalamic neurons generates absence epilepsy. J Neurosci 36:405–418. doi:10.1523/JNEUROSCI.2555-15.2016
PubMed
PubMed Central
Article
CAS
Google Scholar
Szaflarski JP, Kay B, Gotman J et al (2013) The relationship between the localization of the generalized spike and wave discharge generators and the response to valproate. Epilepsia 54:471–480. doi:10.1111/epi.12062
CAS
PubMed
PubMed Central
Article
Google Scholar
International League Against Epilepsy Consortium on Complex Epilepsies (2014) Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies. Lancet Neurol 13:893–903. doi:10.1016/S1474-4422(14)70171-1
Article
CAS
Google Scholar
Lal D, Ruppert A-K, Trucks H et al (2015) Burden analysis of rare microdeletions suggests a strong impact of neurodevelopmental genes in genetic generalised epilepsies. PLoS Genet 11:e1005226. doi:10.1371/journal.pgen.1005226
PubMed
PubMed Central
Article
CAS
Google Scholar
Chung W-C, Hung S-I, Hong H-S et al (2004) A marker for Stevens–Johnson syndrome. Nature 428:386. doi:10.1038/428486a
Article
CAS
Google Scholar
Chen P, Lin J-J, Lu C-S et al (2011) Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan. N Engl J Med 364:1126–1133. doi:10.1056/NEJMoa1009717
CAS
PubMed
Article
Google Scholar
Horn CS, Ater SB, Hurst DL (1986) Carbamazepine-exacerbated epilepsy in children and adolescents. Pediatr Neurol 2:340–345. doi:10.1016/0887-8994(86)90074-3
CAS
PubMed
Article
Google Scholar
Guerrini R, Dravet C, Genton P et al (1998) Lamotrigine and seizure aggravation in severe myoclonic epilepsy. Epilepsia 39:508–512. doi:10.1111/j.1528-1157.1998.tb01413.x
CAS
PubMed
Article
Google Scholar
Snoeijen-Schouwenaars FM, Veendrick MJBM, van Mierlo P et al (2015) Carbamazepine and oxcarbazepine in adult patients with Dravet syndrome: friend or foe? Seizure 29:114–118. doi:10.1016/j.seizure.2015.03.010
CAS
PubMed
Article
Google Scholar
Claes L, Del-Favero J, Ceulemans B et al (2001) De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet 68:1327–1332. doi:10.1086/320609
CAS
PubMed
PubMed Central
Article
Google Scholar
Oliva M, Berkovic SF, Petrou S (2012) Sodium channels and the neurobiology of epilepsy. Epilepsia 53:1849–1859. doi:10.1111/j.1528-1167.2012.03631.x
CAS
PubMed
Article
Google Scholar
Morgan LA, Millichap JJ (2015) Spectrum of SCN8A-related epilepsy. Pediatr Neurol Briefs 29:16. doi:10.15844/pedneurbriefs-29-2-7
PubMed
PubMed Central
Article
Google Scholar
Blanchard MG, Willemsen MH, Walker JB et al (2015) De novo gain-of-function and loss-of-function mutations of SCN8A in patients with intellectual disabilities and epilepsy. J Med Genet 52:330–337. doi:10.1136/jmedgenet-2014-102813
CAS
PubMed
PubMed Central
Article
Google Scholar
Boerma RS, Braun KP, van de Broek MPH et al (2016) Remarkable phenytoin sensitivity in 4 children with SCN8A-related epilepsy: a molecular neuropharmacological approach. Neurotherapeutics 13:192–197. doi:10.1007/s13311-015-0372-8
CAS
PubMed
Article
Google Scholar
Klepper J (2008) Glucose transporter deficiency syndrome (GLUT1DS) and the ketogenic diet. Epilepsia 49:46–49. doi:10.1111/j.1528-1167.2008.01833.x
PubMed
Article
Google Scholar
Leen WG, Taher M, Verbeek MM et al (2014) GLUT1 deficiency syndrome into adulthood: a follow-up study. J Neurol 261:589–599. doi:10.1007/s00415-014-7240-z
CAS
PubMed
Article
Google Scholar
Wickenden AD, Yu W, Zou A et al (2000) Retigabine, a novel anti-convulsant, enhances activation of KCNQ2/Q3 potassium channels. Mol Pharmacol 58:591–600. doi:10.1124/mol.58.3.591
CAS
PubMed
Google Scholar
Millichap J, Park K, Tsuchida T et al (2016) KCNQ2 encephalopathy. Neurol Genet. doi:10.1212/NXG.0000000000000096
PubMed
PubMed Central
Google Scholar
Garin Shkolnik T, Feuerman H, Didkovsky E et al (2014) Blue-gray mucocutaneous discoloration: a new adverse effect of ezogabine. JAMA Dermatol 150:984–989. doi:10.1001/jamadermatol.2013.8895
PubMed
Article
CAS
Google Scholar
Li D, Yuan H, Ortiz-Gonzalez XR et al (2016) GRIN2D recurrent de novo dominant mutation causes a severe epileptic encephalopathy treatable with NMDA receptor channel blockers. Am J Hum Genet. doi:10.1016/j.ajhg.2016.07.013
Google Scholar
Milligan CJ, Li M, Gazina EV et al (2014) KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. Ann Neurol 75:581–590. doi:10.1002/ana.24128
CAS
PubMed
PubMed Central
Article
Google Scholar
Mikati MA, Jiang Y, Carboni M et al (2015) Quinidine in the treatment of KCNT1-positive epilepsies. Ann Neurol 78:995–999. doi:10.1002/ana.24520
CAS
PubMed
PubMed Central
Article
Google Scholar
Guerrini R, Dobyns WB (2014) Malformations of cortical development: clinical features and genetic causes. Lancet Neurol 13:710–726. doi:10.1016/S1474-4422(14)70040-7
PubMed
Article
Google Scholar
Krueger DA, Care MM, Holland K et al (2010) Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 363:1801–1811. doi:10.1056/NEJMoa1001671
CAS
PubMed
Article
Google Scholar
Russo E, Citraro R, Donato G et al (2013) mTOR inhibition modulates epileptogenesis, seizures and depressive behavior in a genetic rat model of absence epilepsy. Neuropharmacology 69:25–36. doi:10.1016/j.neuropharm.2012.09.019
CAS
PubMed
Article
Google Scholar
French JA, Lawson JA, Yapici Z et al (2016) Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet 6736:1–11. doi:10.1016/S0140-6736(16)31419-2
Google Scholar
Sosanya NM, Brager DH, Wolfe S et al (2015) Rapamycin reveals an mTOR-independent repression of Kv1.1 expression during epileptogenesis. Neurobiol Dis 73:96–105. doi:10.1016/j.nbd.2014.09.011
CAS
PubMed
Article
Google Scholar
Dalmau J, Gleichman AJ, Hughes EG et al (2008) Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol 7:1091–1098. doi:10.1016/S1474-4422(08)70224-2
CAS
PubMed
PubMed Central
Article
Google Scholar
Ramaswamy V, Walsh JG, Sinclair DB et al (2013) Inflammasome induction in Rasmussen’s encephalitis: cortical and associated white matter pathogenesis. J Neuroinflammation 10:918. doi:10.1186/1742-2094-10-152
Article
CAS
Google Scholar
Aronica E, Ravizza T, Zurolo E, Vezzani A (2012) Astrocyte immune responses in epilepsy. Glia 60:1258–1268. doi:10.1002/glia.22312
PubMed
Article
Google Scholar
Balosso S, Ravizza T, Aronica E, Vezzani A (2013) The dual role of TNF-α and its receptors in seizures. Exp Neurol 247:267–271. doi:10.1016/j.expneurol.2013.05.010
CAS
PubMed
Article
Google Scholar
Prabowo A, Iyer A, Anink J et al (2013) Differential expression of major histocompatibility complex class I in developmental glioneuronal lesions. J Neuroinflammation 10:12. doi:10.1186/1742-2094-10-12
CAS
PubMed
PubMed Central
Article
Google Scholar
Hoda U, Agarwal NB, Vohora D et al (2016) Resveratrol suppressed seizures by attenuating IL-1β, IL1-Ra, IL-6, and TNF-α in the hippocampus and cortex of kindled mice. Nutr Neurosci. doi:10.1080/1028415X.2016.1189057
PubMed
Google Scholar
Vezzani A, French J, Bartfai T, Baram TZ (2011) The role of inflammation in epilepsy. Nat Rev Neurol 7:31–40. doi:10.1038/nrneurol.2010.178
CAS
PubMed
Article
Google Scholar
Maroso M, Balosso S, Ravizza T et al (2011) Interleukin-1β biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice. Neurotherapeutics 8:304–315. doi:10.1007/s13311-011-0039-z
CAS
PubMed
PubMed Central
Article
Google Scholar
Janigro D (2012) Are you in or out? Leukocyte, ion, and neurotransmitter permeability across the epileptic blood-brain barrier. Epilepsia 53:26–34. doi:10.1111/j.1528-1167.2012.03472.x
CAS
PubMed
PubMed Central
Article
Google Scholar
Janigro D, Iffland PH, Marchi N, Granata T (2013) A role for inflammation in status epilepticus is revealed by a review of current therapeutic approaches. Epilepsia 54:30–32. doi:10.1111/epi.12271
CAS
PubMed
PubMed Central
Article
Google Scholar
Zurolo E, Iyer A, Maroso M et al (2013) Activation of TLR, RAGE and HMGB1 signaling in malformations of cortical development. Brain 134:1015–1032. doi:10.1093/brain/awr032
Article
Google Scholar
Iyer A, Zurolo E, Spliet WGM et al (2010) Evaluation of the innate and adaptive immunity in type I and type II focal cortical dysplasias. Epilepsia 51:1763–1773. doi:10.1111/j.1528-1167.2010.02547.x
CAS
PubMed
Article
Google Scholar
de Vries EE, van den Munckhof B, Braun KPJ et al (2016) Inflammatory mediators in human epilepsy: a systematic review and meta-analysis. Neurosci Biobehav Rev 63:177–190. doi:10.1016/j.neubiorev.2016.02.007
PubMed
Article
CAS
Google Scholar
Diamond ML, Ritter AC, Failla MD et al (2014) IL-1-β associations with posttraumatic epilepsy development: a genetics and biomarker cohort study. Epilepsia 55:1109–1119. doi:10.1111/epi.12628
CAS
PubMed
PubMed Central
Article
Google Scholar
Kwon YS, Pineda E, Auvin S et al (2013) Neuroprotective and antiepileptogenic effects of combination of anti-inflammatory drugs in the immature brain. J Neuroinflammation 10:30. doi:10.1186/1742-2094-10-30
CAS
PubMed
PubMed Central
Article
Google Scholar
Jyonouchi H, Geng L (2016) Intractable epilepsy (IE) and responses to anakinra, a human recombinant IL-1 receptor agonist (IL-1ra): case reports. J Clin Cell Immunol 7:1–5. doi:10.4172/2155-9899.1000456
Google Scholar
Dibbens LM, de Vries B, Donatello S et al (2013) Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat Genet 45:546–551. doi:10.1038/ng.2599
CAS
PubMed
Article
Google Scholar
Scheffer IE, Heron SE, Regan BM et al (2014) Mutations in mammalian target of rapamycin regulator DEPDC5 cause focal epilepsy with brain malformations. Ann Neurol 75:782–787. doi:10.1002/ana.24126
CAS
PubMed
Article
Google Scholar
Baulac S, Ishida S, Marsan E et al (2015) Familial focal epilepsy with focal cortical dysplasia due to DEPDC 5 mutations. Ann Neurol 77:675–683. doi:10.1002/ana.24368
CAS
PubMed
Article
Google Scholar
Weckhuysen S, Marsan E, Lambrecq V et al (2016) Involvement of GATOR complex genes in familial focal epilepsies and focal cortical dysplasia. Epilepsia 57:994–1003. doi:10.1111/epi.13391
CAS
PubMed
Article
Google Scholar
Christensen J, Pedersen MG, Pedersen CB et al (2009) Long-term risk of epilepsy after traumatic brain injury in children and young adults: a population-based cohort study. Lancet 373:1105–1110. doi:10.1016/S0140-6736(09)60214-2
PubMed
Article
Google Scholar
Annegers JF, Hauser A, Rocca WA (1998) A population-based study of seizures brain injuries. N Engl J Med 338:20–24. doi:10.1056/NEJM199801013380104
CAS
PubMed
Article
Google Scholar
Marson AG, Al-Kharusi AM, Alwaidh M et al (2007) The SANAD study of effectiveness of carbamazepine, gabapentin, lamotrigine, oxcarbazepine, or topiramate for treatment of partial epilepsy: an unblinded randomised controlled trial. Lancet (London, England) 369:1000–1015. doi:10.1016/S0140-6736(07)60460-7
CAS
Article
Google Scholar
Glauser T, Ben-Menachem E, Bourgeois B et al (2013) Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes. Epilepsia 54:551–563. doi:10.1111/epi.12074
CAS
PubMed
Article
Google Scholar
Baulac M, Brodie MJ, Patten A et al (2012) Efficacy and tolerability of zonisamide versus controlled-release carbamazepine for newly diagnosed partial epilepsy: a phase 3, randomised, double-blind, non-inferiority trial. Lancet Neurol 11:579–588. doi:10.1016/S1474-4422(12)70105-9
CAS
PubMed
Article
Google Scholar
Leitinger M, Trinka E, Gardella E et al (2016) Diagnostic accuracy of the Salzburg EEG criteria for non-convulsive status epilepticus: a retrospective study. Lancet Neurol 15:1054–1062. doi:10.1016/S1474-4422(16)30137-5
PubMed
Article
Google Scholar
Pohlmann-Eden B, Marson AG, Noack-Rink M et al (2016) Comparative effectiveness of levetiracetam, valproate and carbamazepine among elderly patients with newly diagnosed epilepsy: subgroup analysis of the randomized, unblinded KOMET study. BMC Neurol 16:149. doi:10.1186/s12883-016-0663-7
PubMed
PubMed Central
Article
Google Scholar
Afra P, Adamolekun B (2012) Lacosamide treatment of juvenile myoclonic epilepsy. Seizure 21:202–204. doi:10.1016/j.seizure.2011.12.010
PubMed
Article
Google Scholar
Yates S, Wechsler R, Beller C (2014) Lacosamide for uncontrolled primary generalized tonic-clonic seizures: an open-label extension study (P3.276). Neurology 82(P3):276
Google Scholar
French JA, Krauss GL, Wechsler RT et al (2015) Perampanel for tonic-clonic seizures in idiopathic generalized epilepsy A randomized trial. Neurology 85:950–957. doi:10.1212/WNL.0000000000001930
CAS
PubMed
PubMed Central
Article
Google Scholar
Gowers WR (1881) Epilepsy and other chronic convulsive disorders. Churchill, London
Google Scholar
Feigenbaum JJ, Bergmann F, Richmond SA et al (1989) Nonpsychotropic cannabinoid acts as a functional N-methyl-d-aspartate receptor blocker. Proc Natl Acad Sci USA 86:9584–9587
CAS
PubMed
PubMed Central
Article
Google Scholar
Devinsky O, Cilio MR, Cross H et al (2014) Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia 55:791–802. doi:10.1111/epi.12631
CAS
PubMed
PubMed Central
Article
Google Scholar
Porter BE, Jacobson C (2013) Report of a parent survey of cannabidiol-enriched cannabis use in pediatric treatment-resistant epilepsy. Epilepsy Behav 29:574–577. doi:10.1016/j.yebeh.2013.08.037
PubMed
PubMed Central
Article
Google Scholar
Devinsky O, Marsh E, Friedman D et al (2016) Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol 15:270–278. doi:10.1016/S1474-4422(15)00379-8
CAS
PubMed
Article
Google Scholar
Young S (2013) Marijuana stops child’s severe seizures-CNN.com. In: CNN. http://edition.cnn.com/2013/08/07/health/charlotte-child-medical-marijuana/. Accessed 18 Dec 2016
Soltesz I, Alger BE, Kano M et al (2015) Weeding out bad waves: towards selective cannabinoid circuit control in epilepsy. Nat Rev Neurosci 16:264–277. doi:10.1038/nrn3937
CAS
PubMed
Article
Google Scholar
Volkow ND, Baler RD, Compton WM, Weiss SRB (2014) Adverse health effects of marijuana use. N Engl J Med 370:2219–2227. doi:10.1056/NEJMra1402309
PubMed
PubMed Central
Article
CAS
Google Scholar
Ottman R, Lipton RB, Ettinger AB et al (2011) Comorbidities of epilepsy: results from the epilepsy comorbidities and health (EPIC) survey. Epilepsia 52:308–315. doi:10.1111/j.1528-1167.2010.02927.x
PubMed
Google Scholar
Caplan R, Siddarth P, Stahl L et al (2008) Childhood absence epilepsy: behavioral, cognitive, and linguistic comorbidities. Epilepsia 49:1838–1846. doi:10.1111/j.1528-1167.2008.01680.x
PubMed
Article
Google Scholar
Camfield CS, Camfield PR (2007) Long-term social outcomes for children with epilepsy. Epilepsia 48:3–5. doi:10.1111/j.1528-1167.2007.01390.x
PubMed
Article
Google Scholar
Ferro MA, Camfield CS, Levin SD et al (2013) Trajectories of health-related quality of life in children with epilepsy: a cohort study. Epilepsia 54:1889–1897. doi:10.1111/epi.12388
PubMed
Article
Google Scholar
Jones JE, Watson R, Sheth R et al (2007) Psychiatric comorbidity in children with new onset epilepsy. Dev Med Child Neurol 49:493–497. doi:10.1111/j.1469-8749.2007.00493.x
PubMed
Article
Google Scholar
Hesdorffer DC, Ishihara L, Mynepalli L et al (2012) Epilepsy, suicidality, and psychiatric disorders: a bidirectional association. Ann Neurol 72:184–191. doi:10.1002/ana.23601
PubMed
Article
Google Scholar
Mazarati A, Sankar R (2016) Common mechanisms underlying epileptogenesis and the comorbidities of epilepsy. Cold Spring Harb Perspect Med 6:1–18. doi:10.1101/cshperspect.a022798
Article
Google Scholar
Lothe A, Didelot A, Hammers A et al (2008) Comorbidity between temporal lobe epilepsy and depression: a [18 F] MPPF PET study. Brain 131:2765–2782. doi:10.1093/brain/awn194
CAS
PubMed
Article
Google Scholar
Martinez A, Finegersh A, Cannon DM et al (2013) The 5-HT1A receptor and 5-HT transporter in temporal lobe epilepsy. Neurology 80:1465–1471. doi:10.1212/WNL.0b013e31828cf809
CAS
PubMed
PubMed Central
Article
Google Scholar
Larkin GL, Beautrais AL (2011) A preliminary naturalistic study of low-dose ketamine for depression and suicide ideation in the emergency department. Int J Neuropsychopharmacol 14:1127–1131. doi:10.1017/S1461145711000629
CAS
PubMed
Article
Google Scholar
Schmitz B (2002) Antidepressant drugs: indications and guidelines for use in epilepsy. Epilepsia 43:14–18. doi:10.1046/j.1528-1157.2002.043s2014.x
PubMed
Article
Google Scholar
Harden CL, Goldstein MA (2002) Mood disorders in patients with epilepsy. CNS Drugs 16:291–302. doi:10.2165/00023210-200216050-00002
CAS
PubMed
Article
Google Scholar
Cardamone L, Salzberg M, O’Brien T, Jones N (2013) Antidepressant therapy in epilepsy: can treating the comorbidities affect the underlying disorder? Br J Pharmacol 168:1531–1554. doi:10.1111/bph.12052
CAS
PubMed
PubMed Central
Article
Google Scholar
Kanner AM (2016) Most antidepressant drugs are safe for patients with epilepsy at therapeutic doses: a review of the evidence. Epilepsy Behav 61:282–286. doi:10.1016/j.yebeh.2016.03.022
PubMed
Article
Google Scholar
Faingold CL, Randall M, Zeng C et al (2016) Serotonergic agents act on 5-HT3 receptors in the brain to block seizure-induced respiratory arrest in the DBA/1 mouse model of SUDEP. Epilepsy Behav 64:166–170. doi:10.1016/j.yebeh.2016.09.034
PubMed
Article
Google Scholar
Boylan LS, Flint LA, Labovitz DL et al (2004) Depression but not seizure frequency predicts quality of life in treatment-resistant epilepsy. Neurology 62:258–261. doi:10.1212/01.WNL.0000103282.62353.85
CAS
PubMed
Article
Google Scholar
Campbell E, Kennedy F, Russell A et al (2014) Malformation risks of antiepileptic drug monotherapies in pregnancy: updated results from the UK and Ireland Epilepsy and Pregnancy Registers. J Neurol Neurosurg Psychiatry 85:1029–1034. doi:10.1136/jnnp-2013-306318
CAS
PubMed
Article
Google Scholar
Patel SI, Pennell PB (2016) Management of epilepsy during pregnancy: an update. Ther Adv Neurol Disord 9:118–129. doi:10.1177/1756285615623934
CAS
PubMed
Article
Google Scholar
Hernandez S, Shen A, Holmes LB (2012) Comparative safety of antiepileptic drugs during pregnancy For the North American. Neurology 78:1692–1699. doi:10.1212/WNL.0b013e3182574f39
Article
CAS
Google Scholar
Mawhinney E, Craig J, Morrow J et al (2013) Levetiracetam in pregnancy. Neurology 80:400–405. doi:10.1212/WNL.0b013e31827f0874
CAS
PubMed
Article
Google Scholar
Meador KJ, Baker GA, Browning N et al (2013) Fetal antiepileptic drug exposure and cognitive outcomes at age 6 years (NEAD study): a prospective observational study. Lancet Neurol 12:244–252. doi:10.1016/S1474-4422(12)70323-X
CAS
PubMed
PubMed Central
Article
Google Scholar
Christensen J (2013) Prenatal valproate exposure and risk of autism spectrum disorders. JAMA 309:1696–1703. doi:10.1001/jama.2013.2270
CAS
PubMed
PubMed Central
Article
Google Scholar
Bromley RL, Mawer GE, Briggs M et al (2013) The prevalence of neurodevelopmental disorders in children prenatally exposed to antiepileptic drugs. J Neurol Neurosurg Psychiatry 84:637–643. doi:10.1136/jnnp-2012-304270
PubMed
PubMed Central
Article
Google Scholar
Veiby G, Engelsen BA, Gilhus NE et al (2013) Early child development and exposure to antiepileptic drugs prenatally and through breastfeeding. JAMA Neurol 70:1367. doi:10.1001/jamaneurol.2013.4290
PubMed
Article
Google Scholar
Hernández-Díaz S, Mittendorf R, Smith CR et al (2014) Association between topiramate and zonisamide use during pregnancy and low birth weight. Obstet Gynecol 123:21–28. doi:10.1097/AOG.0000000000000018
PubMed
Article
CAS
Google Scholar
Campbell E, Devenney E, Morrow J et al (2013) Recurrence risk of congenital malformations in infants exposed to antiepileptic drugs in utero. Epilepsia 54:165–171. doi:10.1111/epi.12001
CAS
PubMed
Article
Google Scholar
Vajda FJE, O’Brien TJ, Lander CM et al (2013) Teratogenesis in repeated pregnancies in antiepileptic drug-treated women. Epilepsia 54:181–186. doi:10.1111/j.1528-1167.2012.03625.x
CAS
PubMed
Article
Google Scholar
Edey S, Moran N, Nashef L (2014) SUDEP and epilepsy-related mortality in pregnancy. Epilepsia 55:72–74. doi:10.1111/epi.12621
Article
CAS
Google Scholar
Jobst BC, Cascino GD, R K et al (2015) Resective epilepsy surgery for drug-resistant focal epilepsy. JAMA 313:285. doi:10.1001/jama.2014.17426
PubMed
Article
Google Scholar
Englot DJ, Ouyang D, Garcia PA et al (2012) Epilepsy surgery trends in the United States, 1990–2008. Neurology 78:1200–1206. doi:10.1212/WNL.0b013e318250d7ea
CAS
PubMed
PubMed Central
Article
Google Scholar
Helmstaedter C, May TW, von Lehe M et al (2014) Temporal lobe surgery in Germany from 1988 to 2008: diverse trends in etiological subgroups. Eur J Neurol 21:827–834. doi:10.1111/ene.12322
CAS
PubMed
Article
Google Scholar
Shorvon S, Tomson T (2011) Sudden unexpected death in epilepsy. Lancet 378:2028–2038. doi:10.1016/S0140-6736(11)60176-1
PubMed
Article
Google Scholar
Tebo CC, Evins AI, Christos PJ et al (2014) Evolution of cranial epilepsy surgery complication rates: a 32-year systematic review and meta-analysis. J Neurosurg 120:1415–1427. doi:10.3171/2014.1.JNS131694
PubMed
Article
Google Scholar
Bjellvi J, Flink R, Rydenhag B, Malmgren K (2015) Complications of epilepsy surgery in Sweden 1996–2010: a prospective, population-based study. J Neurosurg 122:519–525. doi:10.3171/2014.9.JNS132679
PubMed
Article
Google Scholar
Menon R, Rathore C, Sarma SP, Radhakrishnan K (2012) Feasibility of antiepileptic drug withdrawal following extratemporal resective epilepsy surgery. Neurology 79:770–776. doi:10.1212/WNL.0b013e3182644f7d
CAS
PubMed
Article
Google Scholar
Yardi R, Irwin A, Kayyali H et al (2014) Reducing versus stopping antiepileptic medications after temporal lobe surgery. Ann Clin Transl Neurol 1:115–123. doi:10.1002/acn3.35
PubMed
PubMed Central
Article
Google Scholar
Taft C, Sager Magnusson E, Ekstedt G, Malmgren K (2014) Health-related quality of life, mood, and patient satisfaction after epilepsy surgery in Sweden—a prospective controlled observational study. Epilepsia 55:878–885. doi:10.1111/epi.12616
PubMed
PubMed Central
Article
Google Scholar
Picot M-C, Jaussent A, Neveu D et al (2016) Cost-effectiveness analysis of epilepsy surgery in a controlled cohort of adult patients with intractable partial epilepsy: a 5-year follow-up study. Epilepsia 57:1669–1679. doi:10.1111/epi.13492
PubMed
Article
Google Scholar
Edelvik A, Rydenhag B, Olsson I et al (2013) Long-term outcomes of epilepsy surgery in Sweden: a national prospective and longitudinal study. Neurology 81:1244–1251. doi:10.1212/WNL.0b013e3182a6ca7b
PubMed
PubMed Central
Article
Google Scholar
Rydenhag B, Flink R, Malmgren K (2013) Surgical outcomes in patients with epileptogenic tumours and cavernomas in Sweden: good seizure control but late referrals. J Neurol Neurosurg Psychiatry 84:49–53. doi:10.1136/jnnp-2012-302449
PubMed
Article
Google Scholar
Ding D, Quigg M, Starke R et al (2015) Predictors of seizure improvement following stereotactic radiosurgery for cerebral arteriovenous malformations in a prospective cohort of 229 patients with AVM-associated epilepsy (P1.001). Neurology 84(P1):001
Google Scholar
Przybylowski CJ, Ding D, Starke RM et al (2015) Seizure and anticonvulsant outcomes following stereotactic radiosurgery for intracranial arteriovenous malformations. J Neurosurg 122:1299–1305. doi:10.3171/2014.11.JNS141388
CAS
PubMed
Article
Google Scholar
Ditty BJ, Omar NB, Foreman PM et al (2016) Seizure outcomes after stereotactic radiosurgery for the treatment of cerebral arteriovenous malformations. J Neurosurg. doi:10.3171/2015.12.JNS152461
PubMed
Google Scholar
Feng E-S, Sui C-B, Wang T-X, Sun G-L (2016) Stereotactic radiosurgery for the treatment of mesial temporal lobe epilepsy. Acta Neurol Scand 134:442–451. doi:10.1111/ane.12562
PubMed
Article
Google Scholar
Waseem H, Osborn KE, Schoenberg MR et al (2015) Laser ablation therapy: an alternative treatment for medically resistant mesial temporal lobe epilepsy after age 50. Epilepsy Behav 51:152–157. doi:10.1016/j.yebeh.2015.07.022
PubMed
Article
Google Scholar
Ribot R, Jagid J, Serrano E et al (2015) MRI-guided stereotactic laser ablation of mesial temporal structures for the treatment of refractory temporal lobe epilepsy (S31.008). Neurology 84(S31):008
Google Scholar
Gonzalez-Martinez J, Vadera S, Mullin J et al (2014) Robot-assisted stereotactic laser ablation in medically intractable epilepsy. Neurosurgery 10:167–173. doi:10.1227/NEU.0000000000000286
PubMed
Article
Google Scholar
Willie JT, Laxpati NG, Drane DL et al (2014) Real-time magnetic resonance-guided stereotactic laser amygdalohippocampotomy for mesial temporal lobe epilepsy. Neurosurgery 74:569–584. doi:10.1227/NEU.0000000000000343
PubMed
PubMed Central
Article
Google Scholar
Wellmer J, Voges J, Parpaley Y (2016) Lesion guided radiofrequency thermocoagulation (L-RFTC) for hypothalamic hamartomas, nodular heterotopias and cortical dysplasias: review and perspective. Seizure 41:206–210. doi:10.1016/j.seizure.2016.05.013
PubMed
Article
Google Scholar
de Tisi J, Bell GS, Peacock JL et al (2011) The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: a cohort study. Lancet 378:1388–1395. doi:10.1016/S0140-6736(11)60890-8
PubMed
Article
Google Scholar
Gonzalez-Martinez J, Bulacio J, Alexopoulos A et al (2013) Stereoelectroencephalography in the “difficult to localize” refractory focal epilepsy: early experience from a North American epilepsy center. Epilepsia 54:323–330. doi:10.1111/j.1528-1167.2012.03672.x
PubMed
Article
Google Scholar
Coan AC, Kubota B, Bergo FPG et al (2014) 3T MRI quantification of hippocampal volume and signal in mesial temporal lobe epilepsy improves detection of hippocampal sclerosis. AJNR Am J Neuroradiol 35:77–83. doi:10.3174/ajnr.A3640
CAS
PubMed
Article
Google Scholar
Mellerio C, Labeyrie M-A, Chassoux F et al (2014) 3T MRI improves the detection of transmantle sign in type 2 focal cortical dysplasia. Epilepsia 55:117–122. doi:10.1111/epi.12464
PubMed
Article
Google Scholar
De Ciantis A, Barba C, Tassi L et al (2016) 7 T MRI in focal epilepsy with unrevealing conventional field strength imaging. Epilepsia 57:445–454. doi:10.1111/epi.13313
PubMed
Article
Google Scholar
Rathore C, Dickson JC, Teotónio R et al (2014) The utility of 18F-fluorodeoxyglucose PET (FDG PET) in epilepsy surgery. Epilepsy Res 108:1306–1314. doi:10.1016/j.eplepsyres.2014.06.012
PubMed
Article
Google Scholar
Yang P-F, Pei J-S, Zhang H-J et al (2014) Long-term epilepsy surgery outcomes in patients with PET-positive, MRI-negative temporal lobe epilepsy. Epilepsy Behav 41:91–97. doi:10.1016/j.yebeh.2014.09.054
PubMed
Article
Google Scholar
Bagić A (2016) Look back to leap forward: the emerging new role of magnetoencephalography (MEG) in nonlesional epilepsy. Clin Neurophysiol 127:60–66. doi:10.1016/j.clinph.2015.05.009
PubMed
Article
Google Scholar
Murakami H, Wang ZI, Marashly A et al (2016) Correlating magnetoencephalography to stereo-electroencephalography in patients undergoing epilepsy surgery. Brain 139:2935–2947. doi:10.1093/brain/aww215
Article
Google Scholar
Lascano AM, Perneger T, Vulliemoz S et al (2016) Yield of MRI, high-density electric source imaging (HD-ESI), SPECT and PET in epilepsy surgery candidates. Clin Neurophysiol 127:150–155. doi:10.1016/j.clinph.2015.03.025
PubMed
Article
Google Scholar
Oxley TJ, Opie NL, John SE et al (2016) Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity. Nat Biotechnol 34:320–327. doi:10.1038/nbt.3428
CAS
PubMed
Article
Google Scholar
Révész D, Rydenhag B, Ben-Menachem E (2016) Complications and safety of vagus nerve stimulation: 25 years of experience at a single center. J Neurosurg Pediatr 18:97–104. doi:10.3171/2016.1.PEDS15534
PubMed
Article
Google Scholar
Englot DJ, Rolston JD, Wright CW et al (2016) Rates and predictors of seizure freedom with vagus nerve stimulation for intractable epilepsy. Neurosurgery 79:345–353. doi:10.1227/NEU.0000000000001165
PubMed
Article
Google Scholar
Ryvlin P, Gilliam FG, Nguyen DK et al (2014) The long-term effect of vagus nerve stimulation on quality of life in patients with pharmacoresistant focal epilepsy: the PuLsE (open prospective randomized long-term effectiveness) trial. Epilepsia 55:893–900. doi:10.1111/epi.12611
CAS
PubMed
PubMed Central
Article
Google Scholar
Martin JLR, Martín-Sánchez E (2012) Systematic review and meta-analysis of vagus nerve stimulation in the treatment of depression: variable results based on study designs. Eur Psychiatry 27:147–155. doi:10.1016/j.eurpsy.2011.07.006
CAS
PubMed
Article
Google Scholar
Heck CN, King-Stephens D, Massey AD et al (2014) Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: final results of the RNS system pivotal trial. Epilepsia 55:432–441. doi:10.1111/epi.12534
PubMed
PubMed Central
Article
Google Scholar
Salanova V, Witt T, Worth R et al (2015) Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology 84:1017–1025. doi:10.1212/WNL.0000000000001334
CAS
PubMed
PubMed Central
Article
Google Scholar
Kowski AB, Voges J, Heinze H-J et al (2015) Nucleus accumbens stimulation in partial epilepsy-A randomized controlled case series. Epilepsia 56:e78–e82. doi:10.1111/epi.12999
PubMed
Article
Google Scholar
Kros L, Eelkman Rooda OHJ, De Zeeuw CI, Hoebeek FE (2015) Controlling cerebellar output to treat refractory epilepsy. Trends Neurosci 38:787–799. doi:10.1016/j.tins.2015.10.002
CAS
PubMed
Article
Google Scholar
Krook-Magnuson E, Armstrong C, Oijala M et al (2013) On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat Commun 4:1376. doi:10.1038/ncomms2376
PubMed
PubMed Central
Article
CAS
Google Scholar