Structural brain abnormalities in patients with vestibular migraine

Abstract

New advances in understanding the pathophysiology of vestibular migraine (VM) have suggested a large overlap between migraine and vestibular pathways. We explored the regional distribution of gray (GM) and white matter (WM) abnormalities in VM patients in comparison to migraine patients with (MWA) and without aura (MWoA) and their correlations with patients’ clinical manifestations. Using a 3.0 Tesla scanner, brain T2-weighted and 3D T1-weighted MRI scans were acquired from 19 VM, 19 MWA, 19 MWoA and 20 age-matched controls. GM and WM volumetric abnormalities were estimated using voxel-based morphometry (SPM12). Compared to controls, migraine patients had decreased GM volume of the left cerebellum and an increased GM volume of the left temporal lobe. VM patients had a selective GM volume increase of frontal and occipital regions compared to controls and the other two groups of migraineurs and no regions with decreased GM volume. Compared to MWoA and MWA, VM had increased GM volume of the left thalamus. Regional GM abnormalities did not correlate with disease duration and attack frequency. No WM volumetric differences were detected between migraine patients and controls. These results show that GM volume abnormalities of nociceptive and multisensory vestibular brain areas occur in VM patients. Overall, our findings suggest that an abnormal brain sensitization might lead to a dismodulation of multimodal sensory integration and processing cortical areas in VM patients.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Headache Classification Committee of the International Headache Society (IHS) (2013) The international classification of headache disorders, 3rd edition (beta version). Cephalalgia 33(9):629–808

  2. 2.

    Lempert T, Olesen J, Furman J, Waterston J, Seemungal B, Carey J, Bisdorff A, Versino M, Evers S, Newman-Toker D (2012) Vestibular migraine: diagnostic criteria. J Vestib Res 22(4):167–172

    PubMed  Google Scholar 

  3. 3.

    Neuhauser H, Leopold M, von Brevern M, Arnold G, Lempert T (2001) The interrelations of migraine, vertigo, and migrainous vertigo. Neurology 56(4):436–441

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Radtke A, von Brevern M, Neuhauser H, Hottenrott T, Lempert T (2012) Vestibular migraine: long-term follow-up of clinical symptoms and vestibulo-cochlear findings. Neurology 79(15):1607–1614

    Article  PubMed  Google Scholar 

  5. 5.

    Dieterich M, Obermann M, Celebisoy N (2016) Vestibular migraine: the most frequent entity of episodic vertigo. J Neurol 263(Suppl 1):S82–S89

    Article  PubMed  Google Scholar 

  6. 6.

    Espinosa-Sanchez JM, Lopez-Escamez JA (2015) New insights into pathophysiology of vestibular migraine. Front Neurol 6:12

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Rocca MA, Ceccarelli A, Falini A, Colombo B, Tortorella P, Bernasconi L, Comi G, Scotti G, Filippi M (2006) Brain gray matter changes in migraine patients with T2-visible lesions: a 3-T MRI study. Stroke 37(7):1765–1770

    Article  PubMed  Google Scholar 

  8. 8.

    Messina R, Rocca MA, Colombo B, Valsasina P, Horsfield MA, Copetti M, Falini A, Comi G, Filippi M (2013) Cortical abnormalities in patients with migraine: a surface-based analysis. Radiology 268(1):170–180

    Article  PubMed  Google Scholar 

  9. 9.

    Schmitz N, Admiraal-Behloul F, Arkink EB, Kruit MC, Schoonman GG, Ferrari MD, van Buchem MA (2008) Attack frequency and disease duration as indicators for brain damage in migraine. Headache 48(7):1044–1055

    Article  PubMed  Google Scholar 

  10. 10.

    Coppola G, Di Renzo A, Tinelli E, Iacovelli E, Lepre C, Di Lorenzo C, Di Lorenzo G, Di Lenola D, Parisi V, Serrao M, Pauri F, Fiermonte G, Bianco F, Pierelli F (2014) Evidence for brain morphometric changes during the migraine cycle: a magnetic resonance-based morphometry study. Cephalalgia 35(9):783–791

    Article  PubMed  Google Scholar 

  11. 11.

    Obermann M, Wurthmann S, Steinberg BS, Theysohn N, Diener HC, Naegel S (2014) Central vestibular system modulation in vestibular migraine. Cephalalgia 34(13):1053–1061

    Article  PubMed  Google Scholar 

  12. 12.

    Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11(6 Pt 1):805–821

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Lopez C, Blanke O (2011) The thalamocortical vestibular system in animals and humans. Brain Res Rev 67(1–2):119–146

    Article  PubMed  Google Scholar 

  14. 14.

    Russo A, Marcelli V, Esposito F, Corvino V, Marcuccio L, Giannone A, Conforti R, Marciano E, Tedeschi G, Tessitore A (2014) Abnormal thalamic function in patients with vestibular migraine. Neurology 82(23):2120–2126

    Article  PubMed  Google Scholar 

  15. 15.

    Shin JH, Kim YK, Kim HJ, Kim JS (2014) Altered brain metabolism in vestibular migraine: comparison of interictal and ictal findings. Cephalalgia 34(1):58–67

    Article  PubMed  Google Scholar 

  16. 16.

    de Tommaso M, Ambrosini A, Brighina F, Coppola G, Perrotta A, Pierelli F, Sandrini G, Valeriani M, Marinazzo D, Stramaglia S, Schoenen J (2014) Altered processing of sensory stimuli in patients with migraine. Nat Rev Neurol 10(3):144–155

    Article  PubMed  Google Scholar 

  17. 17.

    Burstein R, Jakubowski M, Garcia-Nicas E, Kainz V, Bajwa Z, Hargreaves R, Becerra L, Borsook D (2010) Thalamic sensitization transforms localized pain into widespread allodynia. Ann Neurol 68(1):81–91

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Schwedt TJ, Chiang CC, Chong CD, Dodick DW (2015) Functional MRI of migraine. Lancet Neurol 14(1):81–91

    Article  PubMed  Google Scholar 

  19. 19.

    Coppola G, Tinelli E, Lepre C, Iacovelli E, Di Lorenzo C, Di Lorenzo G, Serrao M, Pauri F, Fiermonte G, Bianco F, Pierelli F (2013) Dynamic changes in thalamic microstructure of migraine without aura patients: a diffusion tensor magnetic resonance imaging study. Eur J Neurol 21:287–292

  20. 20.

    Magon S, May A, Stankewitz A, Goadsby PJ, Tso AR, Ashina M, Amin FM, Seifert CL, Chakravarty MM, Muller J, Sprenger T (2015) Morphological abnormalities of Thalamic Subnuclei in Migraine: a multicenter MRI study at 3 Tesla. J Neurosci 35(40):13800–13806

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Messina R, Rocca MA, Colombo B, Pagani E, Falini A, Comi G, Filippi M (2015) White matter microstructure abnormalities in pediatric migraine patients. Cephalalgia 35:1278–1286

  22. 22.

    Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocal inhibitory visual–vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain 121(Pt 9):1749–1758

    Article  PubMed  Google Scholar 

  23. 23.

    Habas C, Guillevin R, Abanou A (2010) In vivo structural and functional imaging of the human rubral and inferior olivary nuclei: a mini-review. Cerebellum 9(2):167–173

    Article  PubMed  Google Scholar 

  24. 24.

    Leiva J, Saavedra H (1990) Eye movement-related neurons in the red nucleus. Neurosci Lett 118(1):37–40

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Lopez LI, Bronstein AM, Gresty MA, Du Boulay EP, Rudge P (1996) Clinical and MRI correlates in 27 patients with acquired pendular nystagmus. Brain 119(Pt 2):465–472

    Article  PubMed  Google Scholar 

  26. 26.

    Satoh Y, Ishizuka K, Takahashi M, Iwasaki SI (2016) Role of the vestibular nuclear complex in facilitating the jaw-opening reflex following stimulation of the red nucleus. Neurosci Res

  27. 27.

    Halasi G, Bacskai T, Matesz C (2005) Connections of the superior vestibular nucleus with the oculomotor and red nuclei in the rat: an electron microscopic study. Brain Res Bull 66(4–6):532–535

    Article  PubMed  Google Scholar 

  28. 28.

    Lakhan SE, Avramut M, Tepper SJ (2013) Structural and functional neuroimaging in migraine: insights from 3 decades of research. Headache 53(1):46–66

    Article  PubMed  Google Scholar 

  29. 29.

    Vogt BA (2005) Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci 6(7):533–544

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Farina S, Tinazzi M, Le Pera D, Valeriani M (2003) Pain-related modulation of the human motor cortex. Neurol Res 25(2):130–142

    Article  PubMed  Google Scholar 

  31. 31.

    Maleki N, Becerra L, Brawn J, McEwen B, Burstein R, Borsook D (2013) Common hippocampal structural and functional changes in migraine. Brain Struct Funct 218(4):903–912

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Bilgic B, Kocaman G, Arslan AB, Noyan H, Sherifov R, Alkan A, Asil T, Parman Y, Baykan B (2016) Volumetric differences suggest involvement of cerebellum and brainstem in chronic migraine. Cephalalgia 36:301–308

  33. 33.

    Ruscheweyh R, Kuhnel M, Filippopulos F, Blum B, Eggert T, Straube A (2014) Altered experimental pain perception after cerebellar infarction. Pain 155(7):1303–1312

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Massimo Filippi.

Ethics declarations

Conflicts of interest

This study was approved by the Local Ethical Committes on human studies and all subjects provided written informed consent prior to study participation.

Ethical standards

The study was approved by the Local Ethical Committee on human studies and was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Informed consent

Written informed consent was obtained from all participants at inclusion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Messina, R., Rocca, M.A., Colombo, B. et al. Structural brain abnormalities in patients with vestibular migraine. J Neurol 264, 295–303 (2017). https://doi.org/10.1007/s00415-016-8349-z

Download citation

Keywords

  • Migraine
  • Vestibular migraine
  • Gray matter abnormalities
  • Voxel-based morphometry