Advertisement

Journal of Neurology

, Volume 264, Issue 2, pp 295–303 | Cite as

Structural brain abnormalities in patients with vestibular migraine

  • Roberta Messina
  • Maria A. Rocca
  • Bruno Colombo
  • Roberto Teggi
  • Andrea Falini
  • Giancarlo Comi
  • Massimo Filippi
Original Communication

Abstract

New advances in understanding the pathophysiology of vestibular migraine (VM) have suggested a large overlap between migraine and vestibular pathways. We explored the regional distribution of gray (GM) and white matter (WM) abnormalities in VM patients in comparison to migraine patients with (MWA) and without aura (MWoA) and their correlations with patients’ clinical manifestations. Using a 3.0 Tesla scanner, brain T2-weighted and 3D T1-weighted MRI scans were acquired from 19 VM, 19 MWA, 19 MWoA and 20 age-matched controls. GM and WM volumetric abnormalities were estimated using voxel-based morphometry (SPM12). Compared to controls, migraine patients had decreased GM volume of the left cerebellum and an increased GM volume of the left temporal lobe. VM patients had a selective GM volume increase of frontal and occipital regions compared to controls and the other two groups of migraineurs and no regions with decreased GM volume. Compared to MWoA and MWA, VM had increased GM volume of the left thalamus. Regional GM abnormalities did not correlate with disease duration and attack frequency. No WM volumetric differences were detected between migraine patients and controls. These results show that GM volume abnormalities of nociceptive and multisensory vestibular brain areas occur in VM patients. Overall, our findings suggest that an abnormal brain sensitization might lead to a dismodulation of multimodal sensory integration and processing cortical areas in VM patients.

Keywords

Migraine Vestibular migraine Gray matter abnormalities Voxel-based morphometry 

Notes

Compliance with ethical standards

Conflicts of interest

This study was approved by the Local Ethical Committes on human studies and all subjects provided written informed consent prior to study participation.

Ethical standards

The study was approved by the Local Ethical Committee on human studies and was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Informed consent

Written informed consent was obtained from all participants at inclusion.

References

  1. 1.
    Headache Classification Committee of the International Headache Society (IHS) (2013) The international classification of headache disorders, 3rd edition (beta version). Cephalalgia 33(9):629–808Google Scholar
  2. 2.
    Lempert T, Olesen J, Furman J, Waterston J, Seemungal B, Carey J, Bisdorff A, Versino M, Evers S, Newman-Toker D (2012) Vestibular migraine: diagnostic criteria. J Vestib Res 22(4):167–172PubMedGoogle Scholar
  3. 3.
    Neuhauser H, Leopold M, von Brevern M, Arnold G, Lempert T (2001) The interrelations of migraine, vertigo, and migrainous vertigo. Neurology 56(4):436–441CrossRefPubMedGoogle Scholar
  4. 4.
    Radtke A, von Brevern M, Neuhauser H, Hottenrott T, Lempert T (2012) Vestibular migraine: long-term follow-up of clinical symptoms and vestibulo-cochlear findings. Neurology 79(15):1607–1614CrossRefPubMedGoogle Scholar
  5. 5.
    Dieterich M, Obermann M, Celebisoy N (2016) Vestibular migraine: the most frequent entity of episodic vertigo. J Neurol 263(Suppl 1):S82–S89CrossRefPubMedGoogle Scholar
  6. 6.
    Espinosa-Sanchez JM, Lopez-Escamez JA (2015) New insights into pathophysiology of vestibular migraine. Front Neurol 6:12CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rocca MA, Ceccarelli A, Falini A, Colombo B, Tortorella P, Bernasconi L, Comi G, Scotti G, Filippi M (2006) Brain gray matter changes in migraine patients with T2-visible lesions: a 3-T MRI study. Stroke 37(7):1765–1770CrossRefPubMedGoogle Scholar
  8. 8.
    Messina R, Rocca MA, Colombo B, Valsasina P, Horsfield MA, Copetti M, Falini A, Comi G, Filippi M (2013) Cortical abnormalities in patients with migraine: a surface-based analysis. Radiology 268(1):170–180CrossRefPubMedGoogle Scholar
  9. 9.
    Schmitz N, Admiraal-Behloul F, Arkink EB, Kruit MC, Schoonman GG, Ferrari MD, van Buchem MA (2008) Attack frequency and disease duration as indicators for brain damage in migraine. Headache 48(7):1044–1055CrossRefPubMedGoogle Scholar
  10. 10.
    Coppola G, Di Renzo A, Tinelli E, Iacovelli E, Lepre C, Di Lorenzo C, Di Lorenzo G, Di Lenola D, Parisi V, Serrao M, Pauri F, Fiermonte G, Bianco F, Pierelli F (2014) Evidence for brain morphometric changes during the migraine cycle: a magnetic resonance-based morphometry study. Cephalalgia 35(9):783–791CrossRefPubMedGoogle Scholar
  11. 11.
    Obermann M, Wurthmann S, Steinberg BS, Theysohn N, Diener HC, Naegel S (2014) Central vestibular system modulation in vestibular migraine. Cephalalgia 34(13):1053–1061CrossRefPubMedGoogle Scholar
  12. 12.
    Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11(6 Pt 1):805–821CrossRefPubMedGoogle Scholar
  13. 13.
    Lopez C, Blanke O (2011) The thalamocortical vestibular system in animals and humans. Brain Res Rev 67(1–2):119–146CrossRefPubMedGoogle Scholar
  14. 14.
    Russo A, Marcelli V, Esposito F, Corvino V, Marcuccio L, Giannone A, Conforti R, Marciano E, Tedeschi G, Tessitore A (2014) Abnormal thalamic function in patients with vestibular migraine. Neurology 82(23):2120–2126CrossRefPubMedGoogle Scholar
  15. 15.
    Shin JH, Kim YK, Kim HJ, Kim JS (2014) Altered brain metabolism in vestibular migraine: comparison of interictal and ictal findings. Cephalalgia 34(1):58–67CrossRefPubMedGoogle Scholar
  16. 16.
    de Tommaso M, Ambrosini A, Brighina F, Coppola G, Perrotta A, Pierelli F, Sandrini G, Valeriani M, Marinazzo D, Stramaglia S, Schoenen J (2014) Altered processing of sensory stimuli in patients with migraine. Nat Rev Neurol 10(3):144–155CrossRefPubMedGoogle Scholar
  17. 17.
    Burstein R, Jakubowski M, Garcia-Nicas E, Kainz V, Bajwa Z, Hargreaves R, Becerra L, Borsook D (2010) Thalamic sensitization transforms localized pain into widespread allodynia. Ann Neurol 68(1):81–91CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Schwedt TJ, Chiang CC, Chong CD, Dodick DW (2015) Functional MRI of migraine. Lancet Neurol 14(1):81–91CrossRefPubMedGoogle Scholar
  19. 19.
    Coppola G, Tinelli E, Lepre C, Iacovelli E, Di Lorenzo C, Di Lorenzo G, Serrao M, Pauri F, Fiermonte G, Bianco F, Pierelli F (2013) Dynamic changes in thalamic microstructure of migraine without aura patients: a diffusion tensor magnetic resonance imaging study. Eur J Neurol 21:287–292Google Scholar
  20. 20.
    Magon S, May A, Stankewitz A, Goadsby PJ, Tso AR, Ashina M, Amin FM, Seifert CL, Chakravarty MM, Muller J, Sprenger T (2015) Morphological abnormalities of Thalamic Subnuclei in Migraine: a multicenter MRI study at 3 Tesla. J Neurosci 35(40):13800–13806CrossRefPubMedGoogle Scholar
  21. 21.
    Messina R, Rocca MA, Colombo B, Pagani E, Falini A, Comi G, Filippi M (2015) White matter microstructure abnormalities in pediatric migraine patients. Cephalalgia 35:1278–1286Google Scholar
  22. 22.
    Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocal inhibitory visual–vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain 121(Pt 9):1749–1758CrossRefPubMedGoogle Scholar
  23. 23.
    Habas C, Guillevin R, Abanou A (2010) In vivo structural and functional imaging of the human rubral and inferior olivary nuclei: a mini-review. Cerebellum 9(2):167–173CrossRefPubMedGoogle Scholar
  24. 24.
    Leiva J, Saavedra H (1990) Eye movement-related neurons in the red nucleus. Neurosci Lett 118(1):37–40CrossRefPubMedGoogle Scholar
  25. 25.
    Lopez LI, Bronstein AM, Gresty MA, Du Boulay EP, Rudge P (1996) Clinical and MRI correlates in 27 patients with acquired pendular nystagmus. Brain 119(Pt 2):465–472CrossRefPubMedGoogle Scholar
  26. 26.
    Satoh Y, Ishizuka K, Takahashi M, Iwasaki SI (2016) Role of the vestibular nuclear complex in facilitating the jaw-opening reflex following stimulation of the red nucleus. Neurosci ResGoogle Scholar
  27. 27.
    Halasi G, Bacskai T, Matesz C (2005) Connections of the superior vestibular nucleus with the oculomotor and red nuclei in the rat: an electron microscopic study. Brain Res Bull 66(4–6):532–535CrossRefPubMedGoogle Scholar
  28. 28.
    Lakhan SE, Avramut M, Tepper SJ (2013) Structural and functional neuroimaging in migraine: insights from 3 decades of research. Headache 53(1):46–66CrossRefPubMedGoogle Scholar
  29. 29.
    Vogt BA (2005) Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci 6(7):533–544CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Farina S, Tinazzi M, Le Pera D, Valeriani M (2003) Pain-related modulation of the human motor cortex. Neurol Res 25(2):130–142CrossRefPubMedGoogle Scholar
  31. 31.
    Maleki N, Becerra L, Brawn J, McEwen B, Burstein R, Borsook D (2013) Common hippocampal structural and functional changes in migraine. Brain Struct Funct 218(4):903–912CrossRefPubMedGoogle Scholar
  32. 32.
    Bilgic B, Kocaman G, Arslan AB, Noyan H, Sherifov R, Alkan A, Asil T, Parman Y, Baykan B (2016) Volumetric differences suggest involvement of cerebellum and brainstem in chronic migraine. Cephalalgia 36:301–308Google Scholar
  33. 33.
    Ruscheweyh R, Kuhnel M, Filippopulos F, Blum B, Eggert T, Straube A (2014) Altered experimental pain perception after cerebellar infarction. Pain 155(7):1303–1312CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Neuroimaging Research Unit, Institute of Experimental Neurology, Division of NeuroscienceSan Raffaele Scientific Institute, Vita-Salute San Raffaele UniversityMilanItaly
  2. 2.Department of Neurology, Institute of Experimental Neurology, Division of NeuroscienceSan Raffaele Scientific Institute, Vita-Salute San Raffaele UniversityMilanItaly
  3. 3.ENT Department, San Raffaele Scientific InstituteVita-Salute San Raffaele UniversityMilanItaly
  4. 4.Department of Neuroradiology, San Raffaele Scientific InstituteVita-Salute San Raffaele UniversityMilanItaly

Personalised recommendations