Abstract
Huntington disease (HD) is a relentlessly progressive neurodegenerative disorder with symptoms across a wide range of neurological domains, including cognitive and motor dysfunction. There is still no causative treatment for HD but environmental factors such as passive lifestyle may modulate disease onset and progression. In humans, multidisciplinary rehabilitation has a positive impact on cognitive functions. However, a specific role for exercise as a component of an environmental enrichment effect has been difficult to demonstrate. We aimed at investigating whether endurance training (ET) stabilizes the progression of motor and cognitive dysfunction and ameliorates cardiovascular function in HD patients. Twelve male HD patients (mean ± SD, 54.8 ± 7.1 years) and twelve male controls (49.1 ± 6.8 years) completed 26 weeks of endurance training. Before and after the training intervention, clinical assessments, exercise physiological tests, and a body composition measurement were conducted and a muscle biopsy was taken from M. vastus lateralis. To examine the natural course of the disease, HD patients were additionally assessed 6 months prior to ET. During the ET period, there was a motor deficit stabilization as indicated by the Unified Huntington’s Disease Rating Scale motor section score in HD patients (baseline: 18.6 ± 9.2, pre-training: 26.0 ± 13.7, post-training: 26.8 ± 16.4). Peak oxygen uptake (\(\dot{V}{\text{O}}_{{ 2 {\text{peak}}}}\)) significantly increased in HD patients (∆\(\dot{V}{\text{O}}_{{ 2 {\text{peak}}}}\) = +0.33 ± 0.28 l) and controls (∆\(\dot{V}{\text{O}}_{{ 2 {\text{peak}}}}\) = +0.29 ± 0.41 l). No adverse effects of the training intervention were reported. Our results confirm that HD patients are amenable to a specific exercise-induced therapeutic strategy indicated by an increased cardiovascular function and a stabilization of motor function.
This is a preview of subscription content, access via your institution.


References
Baker LD, Frank LL, Foster-Schubert K et al (2010) Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol 67:71–79
Benedict RHB, Schretlen D, Groninger L, Brandt J (1998) Hopkins verbal learning test revised: normative data and analysis of inter-form and test-retest reliability. Clin Neuropsychol 12:43–55
Bohlen S, Ekwall C, Hellstrom K et al (2013) Physical therapy in Huntington’s disease—toward objective assessments? Eur J Neurol 20:389–393
Borg E, Kaijser L (2006) A comparison between three rating scales for perceived exertion and two different work tests. Scand J Med Sci Sports 16:57–69
Busse M, Khalil H, Brooks S, Quinn L, Rosser A (2012) Practice, progress and future directions for physical therapies in huntingtons disease. J Huntingt Dis 1:175–185
Busse M, Quinn L, Debono K et al (2013) A randomized feasibility study of a 12-week community-based exercise program for people with Huntington’s disease. J Neurol Phys Ther 37:149–158
Butters N, Granholm E, Salmon DP, Grant I, Wolfe J (1987) Episodic and semantic memory: a comparison of amnesic and demented patients. J Clin Exp Neuropsychol 9:479–497
Butters N, Wolfe J, Granholm E, Martone M (1986) An assessment of verbal recall, recognition and fluency abilities in patients with Huntington’s disease. Cortex 22:11–32
Cruickshank TM, Thompson JA, Dominguez DJ et al (2015) The effect of multidisciplinary rehabilitation on brain structure and cognition in Huntington’s disease: an exploratory study. Brain Behav 5:e00312
van Dellen A, Cordery PM, Spires TL, Blakemore C, Hannan AJ (2008) Wheel running from a juvenile age delays onset of specific motor deficits but does not alter protein aggregate density in a mouse model of Huntington’s disease. BMC Neurosci 9:34
Goodwin VA, Richards SH, Taylor RS, Taylor AH, Campbell JL (2008) The effectiveness of exercise interventions for people with Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 23:631–640
Harrison DJ, Busse M, Openshaw R, Rosser AE, Dunnett SB, Brooks SP (2013) Exercise attenuates neuropathology and has greater benefit on cognitive than motor deficits in the R6/1 Huntington’s disease mouse model. Exp Neurol 248:457–469
Helgerud J, Hoydal K, Wang E et al (2007) Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc 39:665–671
Hodges JR, Salmon DP, Butters N (1990) Differential impairment of semantic and episodic memory in Alzheimer’s and Huntington’s diseases: a controlled prospective study. J Neurol Neurosurg Psychiatry 53:1089–1095
Huntington Study Group (1996) Unified Huntington’s Disease Rating Scale: reliability and consistency. Mov Disord 11:136–142
Item F, Nocito A, Thony S et al (2013) Combined whole-body vibration, resistance exercise, and sustained vascular occlusion increases PGC-1alpha and VEGF mRNA abundances. Eur J Appl Physiol 113:1081–1090
Kosinski CM, Schlangen C, Gellerich FN et al (2007) Myopathy as a first symptom of Huntington’s disease in a Marathon runner. Mov Disord 22(11):1637–1640. doi:10.1002/mds.21550
Lemiere J, Decruyenaere M, Evers-Kiebooms G, Vandenbusche E, Dom R (2004) Cognitive changes in patients with Huntington’s disease (HD) and asymptomatic carriers of the HD mutation–a longitudinal follow-up study. J Neurol 251:935–942
Mattis S (1988) Dementia Rating Scale: professional manual. Psychological Assessment Resources Inc, Odessa
Mattis S (1976) Mental status examination for organic mental syndrome in the elderly patient. In: Bellack L, Karasu T (ed) Geriatrics psychiatry: a handbook for psychiatrists and primary care physicians. New York, pp 77–121
Pang TY, Stam NC, Nithianantharajah J, Howard ML, Hannan AJ (2006) Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in Huntington’s disease transgenic mice. Neurosci 141:569–584
Potter MC, Yuan C, Ottenritter C, Mughal M, van Praag H (2010) Exercise is not beneficial and may accelerate symptom onset in a mouse model of Huntington’s disease. PLoS Curr 2:RRN1201
Reitan R (1958) Validity of the trail making test as an indicator of organic brain damage. Percept Mot Skills 8:271–276
Russell AP, Feilchenfeldt J, Schreiber S et al (2003) Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes 52:2481–2874
Salmon DP, Kwo-on-Yuen PF, Heindel WC, Butters N, Thal LJ (1989) Differentiation of Alzheimer’s disease and Huntington’s disease with the Dementia Rating Scale. Arch Neurol 46:1204–1208
Smith A (1973) Symbol digit modalities test manual. Western Psychological Services, Los Angeles
Stroop J (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18:643–662
Acknowledgments
We thank Dr. Niels Hagenbuch and Prof. Burkhardt Seifert of the Epidemiology, Biostatistics and Prevention Institute (University of Zurich) for their support and assistance during the statistical analyses. The study was supported by the Swiss National Science Foundation (320030_135539) and the Jacques and Gloria Gossweiler Foundation.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
None. The results of this study do not constitute endorsement by ACSM. The authors declare that the results of the study are presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation.
Ethical standards
All patients and controls gave their written informed consent. The protocol was approved by the ethics committee of the Canton of Zurich (KEK-ZH-Nr. 2009-0119) and was in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki for research involving human subjects (ClinicalTrials.gov NCT01879267)
Funding
The study was supported by the Swiss National Science Foundation (320030_135539) and the Jacques and Gloria Gossweiler Foundation. The funding sources had no role in writing of the manuscript or in the decision to submit it for publication.
Additional information
S. Frese, J. A. Petersen, M. Toigo and H. H. Jung contributed equally.
Rights and permissions
About this article
Cite this article
Frese, S., Petersen, J.A., Ligon-Auer, M. et al. Exercise effects in Huntington disease. J Neurol 264, 32–39 (2017). https://doi.org/10.1007/s00415-016-8310-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00415-016-8310-1
Keywords
- Unified Huntington disease rating scale (UHDRS)
- Endurance training
- Motor function
- Cardiovascular function
- Peak oxygen uptake (\(\dot{V}{\text{O}}_{{ 2 {\text{peak}}}}\))