Skip to main content

Advertisement

Log in

Higher frequencies of HLA DQB1*05:01 and anti-glycosphingolipid antibodies in a cluster of severe Guillain–Barré syndrome

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Few regional and seasonal Guillain–Barré syndrome (GBS) clusters have been reported so far. It is unknown whether patients suffering from sporadic GBS differ from GBS clusters with respect to clinical and paraclinical parameters, HLA association and antibody response to glycosphingolipids and Campylobacter jejuni (Cj). We examined 40 consecutive patients with GBS from the greater Munich area in Germany with 14 of those admitted within a period of 3 months in fall 2010 defining a cluster of GBS. Sequencing-based HLA typing of the HLA genes DRB1, DQB1, and DPB1 was performed, and ELISA for anti-glycosphingolipid antibodies was carried out. Clinical and paraclinical findings (Cj seroreactivity, cerebrospinal fluid parameters, and electrophysiology) were obtained and analyzed. GBS cluster patients were characterized by a more severe clinical phenotype with more patients requiring mechanical ventilation and higher frequencies of autoantibodies against sulfatide, GalC and certain ganglioside epitopes (54 %) as compared to sporadic GBS cases (13 %, p = 0.017). Cj seropositivity tended to be higher within GBS cluster patients (69 %) as compared to sporadic cases (46 %, p = 0.155). We noted higher frequencies of HLA class II allele DQB1*05:01 in the cluster cohort (23 %) as compared to sporadic GBS patients (3 %, p = 0.019). Cluster of severe GBS was defined by higher frequencies of autoantibodies against glycosphingolipids. HLA class II allele DQB1*05:01 might contribute to clinical worsening in the cluster patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jacobs BC, van Doorn PA, Schmitz PI et al (1996) Campylobacter jejuni infections and anti-GM1 antibodies in Guillain–Barré syndrome. Ann Neurol 40:181–187. doi:10.1002/ana.410400209

    Article  CAS  PubMed  Google Scholar 

  2. Hadden RD, Karch H, Hartung HP et al (2001) Preceding infections, immune factors, and outcome in Guillain–Barré syndrome. Neurology 56:758–765

    Article  CAS  PubMed  Google Scholar 

  3. Rees JH, Gregson NA, Hughes RA (1995) Anti-ganglioside GM1 antibodies in Guillain–Barré syndrome and their relationship to Campylobacter jejuni infection. Ann Neurol 38:809–816. doi:10.1002/ana.410380516

    Article  CAS  PubMed  Google Scholar 

  4. van Koningsveld R, Schmitz PIM, Ang CW et al (2002) Infections and course of disease in mild forms of Guillain–Barré syndrome. Neurology 58:610–614

    Article  PubMed  Google Scholar 

  5. Hughes RA, Cornblath DR (2005) Guillain–Barré syndrome. Lancet 366:1653–1666

    Article  CAS  PubMed  Google Scholar 

  6. van den Berg B, Walgaard C, Drenthen J et al (2014) Guillain–Barré syndrome: pathogenesis, diagnosis, treatment and prognosis. Nat Rev Neurol 10:469–482. doi:10.1038/nrneurol.2014.121

    Article  PubMed  Google Scholar 

  7. Yuki N, Hartung H-P (2012) Guillain–Barré syndrome. N Engl J Med 366:2294–2304. doi:10.1056/NEJMra1114525

    Article  CAS  PubMed  Google Scholar 

  8. Yu RK, Usuki S, Ariga T (2006) Ganglioside molecular mimicry and its pathological roles in Guillain–Barré syndrome and related diseases. Infect Immun 74:6517–6527. doi:10.1128/IAI.00967-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rees JH, Soudain SE, Gregson NA, Hughes RA (1995) Campylobacter jejuni infection and Guillain–Barré syndrome. N Engl J Med 333:1374–1379. doi:10.1056/NEJM199511233332102

    Article  CAS  PubMed  Google Scholar 

  10. Drenthen J, Yuki N, Meulstee J et al (2011) Guillain–Barré syndrome subtypes related to Campylobacter infection. J Neurol Neurosurg Psychiatr 82:300–305. doi:10.1136/jnnp.2010.226639

    Article  PubMed  Google Scholar 

  11. Kusunoki S, Shiina M, Kanazawa I (2001) Anti-Gal-C antibodies in GBS subsequent to mycoplasma infection: evidence of molecular mimicry. Neurology 57:736–738

    Article  CAS  PubMed  Google Scholar 

  12. Ang CW, Tio-Gillen AP, Groen J et al (2002) Cross-reactive anti-galactocerebroside antibodies and Mycoplasma pneumoniae infections in Guillain–Barré syndrome. J Neuroimmunol 130:179–183

    Article  CAS  PubMed  Google Scholar 

  13. Ogawara K, Kuwabara S, Mori M et al (2000) Axonal Guillain–Barré syndrome: relation to anti-ganglioside antibodies and Campylobacter jejuni infection in Japan. Ann Neurol 48:624–631

    Article  CAS  PubMed  Google Scholar 

  14. Tam CC, O’Brien SJ, Rodrigues LC (2006) Influenza, Campylobacter and Mycoplasma infections, and hospital admissions for Guillain–Barré syndrome, England. Emerg Infect Dis 12:1880–1887. doi:10.3201/eid1212.051032

    Article  PubMed  PubMed Central  Google Scholar 

  15. Adams D, Gibson JD, Thomas PK et al (1977) HLA antigens in Guillain–Barré syndrome. Lancet 2:504–505

    Article  CAS  PubMed  Google Scholar 

  16. Kaslow RA, Sullivan-Bolyai JZ, Hafkin B et al (1984) HLA antigens in Guillain–Barré syndrome. Neurology 34:240. doi:10.1212/WNL.34.2.240

    Article  CAS  PubMed  Google Scholar 

  17. McCombe PA, Csurhes PA, Greer JM (2006) Studies of HLA associations in male and female patients with Guillain–Barré syndrome (GBS) and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). J Neuroimmunol 180:172–177. doi:10.1016/j.jneuroim.2006.07.017

    Article  CAS  PubMed  Google Scholar 

  18. Geleijns K, Schreuder GMT, Jacobs BC et al (2005) HLA class II alleles are not a general susceptibility factor in Guillain–Barre syndrome. Neurology 64:44–49. doi:10.1212/01.WNL.0000148727.02732.01

    Article  CAS  PubMed  Google Scholar 

  19. Rees JH, Vaughan RW, Kondeatis E, Hughes RA (1995) HLA-class II alleles in Guillain–Barré syndrome and Miller Fisher syndrome and their association with preceding Campylobacter jejuni infection. J Neuroimmunol 62:53–57

    Article  CAS  PubMed  Google Scholar 

  20. Magira EE, Papaioakim M, Nachamkin I et al (2003) Differential distribution of HLA-DQ beta/DR beta epitopes in the two forms of Guillain–Barré syndrome, acute motor axonal neuropathy and acute inflammatory demyelinating polyneuropathy (AIDP): identification of DQ beta epitopes associated with susceptibility to and protection from AIDP. J Immunol 170:3074–3080

    Article  CAS  PubMed  Google Scholar 

  21. Hughes RA, Newsom-Davis JM, Perkin GD, Pierce JM (1978) Controlled trial prednisolone in acute polyneuropathy. Lancet 2:750–753

    Article  CAS  PubMed  Google Scholar 

  22. van Koningsveld R, van Doorn PA, Schmitz PI et al (2000) Mild forms of Guillain–Barré syndrome in an epidemiologic survey in The Netherlands. Neurology 54:620–625

    Article  PubMed  Google Scholar 

  23. Guillain–Barré Syndrome Steroid Trial Group (1993) Double-blind trial of intravenous methylprednisolone in Guillain–Barré syndrome. Lancet 341:586–590. doi:10.1016/0140-6736(93)90351-G

    Google Scholar 

  24. Willison HJ, Veitch J, Swan AV et al (1999) Inter-laboratory validation of an ELISA for the determination of serum anti-ganglioside antibodies. Eur J Neurol 6:71–77

    Article  CAS  PubMed  Google Scholar 

  25. Rinaldi S, Brennan KM, Willison HJ (2010) Heteromeric glycolipid complexes as modulators of autoantibody and lectin binding. Prog Lipid Res 49:87–95. doi:10.1016/j.plipres.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  26. Schmidt AH, Solloch UV, Pingel J et al (2011) High-resolution human leukocyte antigen allele and haplotype frequencies of the Polish population based on 20,653 stem cell donors. Hum Immunol 72:558–565. doi:10.1016/j.humimm.2011.03.010

    Article  CAS  PubMed  Google Scholar 

  27. Davidson I, Wilson C, Walton T et al (2010) What constitutes a “Good” recovery outcome in post-acute Guillain–Barré syndrome? Results of a Nationwide Survey of post-acute GBS sufferers in the United Kingdom. Eur J Neurol 17:677–683. doi:10.1111/j.1468-1331.2009.02906.x

    Article  CAS  PubMed  Google Scholar 

  28. Merkies ISJ, Schmitz PIM, Van der Meché FGA et al (2002) Clinimetric evaluation of a new overall disability scale in immune mediated polyneuropathies. J Neurol Neurosurg Psychiatr 72:596–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hadden RD, Cornblath DR, Hughes RA et al (1998) Electrophysiological classification of Guillain–Barré syndrome: clinical associations and outcome. Plasma Exchange/Sandoglobulin Guillain–Barré Syndrome Trial Group. Ann Neurol 44:780–788. doi:10.1002/ana.410440512

    Article  CAS  PubMed  Google Scholar 

  30. Kokubun N, Nishibayashi M, Uncini A et al (2010) Conduction block in acute motor axonal neuropathy. Brain 133:2897–2908. doi:10.1093/brain/awq260

    Article  PubMed  Google Scholar 

  31. Allos BM (1997) Association between Campylobacter infection and Guillain–Barré syndrome. J Infect Dis 176(Suppl 2):S125–S128

    Article  PubMed  Google Scholar 

  32. Schmidt AH, Baier D, Solloch UV et al (2009) Estimation of high-resolution HLA-A, -B, -C, -DRB1 allele and haplotype frequencies based on 8862 German stem cell donors and implications for strategic donor registry planning. Hum Immunol 70:895–902. doi:10.1016/j.humimm.2009.08.006

    Article  CAS  PubMed  Google Scholar 

  33. Enders U, Karch H, Toyka KV et al (1993) The spectrum of immune responses to Campylobacter jejuni and glycoconjugates in Guillain–Barré syndrome and in other neuroimmunological disorders. Ann Neurol 34:136–144. doi:10.1002/ana.410340208

    Article  CAS  PubMed  Google Scholar 

  34. Jacobs BC, Rothbarth PH, van der Meché FG et al (1998) The spectrum of antecedent infections in Guillain–Barré syndrome: a case–control study. Neurology 51:1110–1115

    Article  CAS  PubMed  Google Scholar 

  35. Sejvar JJ, Baughman AL, Wise M, Morgan OW (2011) Population incidence of Guillain–Barré syndrome: a systematic review and meta-analysis. Neuroepidemiology 36:123–133. doi:10.1159/000324710

    Article  PubMed  Google Scholar 

  36. Chiba A, Kusunoki S, Obata H et al (1993) Serum anti-GQ1b IgG antibody is associated with ophthalmoplegia in Miller Fisher syndrome and Guillain–Barré syndrome: clinical and immunohistochemical studies. Neurology 43:1911–1917

    Article  CAS  PubMed  Google Scholar 

  37. Fukami Y, Wong AHY, Funakoshi K et al (2016) Anti-GQ1b antibody syndrome: anti-ganglioside complex reactivity determines clinical spectrum. Eur J Neurol 23:320–326. doi:10.1111/ene.12769

    Article  CAS  PubMed  Google Scholar 

  38. Lopate G, Pestronk A, Kornberg AJ et al (1997) IgM anti-sulfatide autoantibodies: patterns of binding to cerebellum, dorsal root ganglion and peripheral nerve. J Neurol Sci 151:189–193

    Article  CAS  PubMed  Google Scholar 

  39. Carpo M, Meucci N, Allaria S et al (2000) Anti-sulfatide IgM antibodies in peripheral neuropathy. J Neurol Sci 176:144–150

    Article  CAS  PubMed  Google Scholar 

  40. van den Berg LH, Lankamp CL, de Jager AE et al (1993) Anti-sulphatide antibodies in peripheral neuropathy. J Neurol Neurosurg Psychiatr 56:1164–1168

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ilyas AA, Mithen FA, Dalakas MC et al (1991) Antibodies to sulfated glycolipids in Guillain–Barré syndrome. J Neurol Sci 105:108–117

    Article  CAS  PubMed  Google Scholar 

  42. Souayah N, Mian NF, Gu Y, Ilyas AA (2007) Elevated anti-sulfatide antibodies in Guillain–Barré syndrome in T cell depleted at end-stage AIDS. J Neuroimmunol 188:143–145. doi:10.1016/j.jneuroim.2007.05.020

    Article  CAS  PubMed  Google Scholar 

  43. Patente TA, Monteiro MB, Vieira SM et al (2015) Linkage disequilibrium with HLA-DRB1-DQB1 haplotypes explains the association of TNF-308G>A variant with type 1 diabetes in a Brazilian cohort. Gene 568:50–54. doi:10.1016/j.gene.2015.05.017

    Article  CAS  PubMed  Google Scholar 

  44. Tautz C, Rihs HP, Thiele A et al (1994) Association of class II sequences encoding DR1 and DQ5 specificities with hypersensitivity to chironomid allergen Chi t I. J Allergy Clin Immunol 93:918–925

    Article  CAS  PubMed  Google Scholar 

  45. Fekih-Mrissa N, Mrad M, Riahi A et al (2014) Association of HLA-DR/DQ polymorphisms with Guillain–Barré syndrome in Tunisian patients. Clin Neurol Neurosurg 121:19–22. doi:10.1016/j.clineuro.2014.03.014

    Article  PubMed  Google Scholar 

  46. Jones MG, Nielsen J, Welch J et al (2004) Association of HLA-DQ5 and HLA-DR1 with sensitization to organic acidanhydrides. Clin Exp Allergy 34:812–816. doi:10.1111/j.1365-2222.2004.1956.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Nadine Miksch and Heike Mating for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Hemmer.

Ethics declarations

Financial disclosure

LS was supported by intramural funding of the medical faculty of the Technische Universität München. BH was supported by grants from the German Research Foundation (SFB-TR128) and the German Ministry for Education and Research (German Competence Network Multiple Sclerosis, Control-MS, 01GI0917).

Conflicts of interest

LS has received travel support from Genzyme Corporation. VW, US, VL, VG, NL, DG, RW, AHS, FG, TFMA, JS and MPL report no disclosures relevant to the manuscript. AB has received travel support and personal compensations from Biogen, Bayer Healthcare, Teva, Sanofi, Merck Serono and Novartis and research support from Bayer Healthcare. BH has served on scientific advisory boards for F. Hoffmann-La Roche Ltd., Novartis, Bayer Healthcare, Merck Serono, Biogen, Chugai Pharmaceuticals, and Genentech; serves on the international advisory board of JAMA Neurology, Multiple Sclerosis Journal, and Experimental Neurology; has received speaker honoraria from Bayer Healthcare, Novartis, Biogen, Merck Serono, and F. Hoffmann-La Roche Ltd.; has received research support from Five Prime, Chugai Pharmaceuticals and F. Hoffmann-La Roche Ltd. LS and BH have filed a patent for the detection of antibodies against KIR4.1 in a subpopulation of patients with MS. BH has filed a patent for genetic determinants of neutralizing antibodies to interferon-beta.

Ethical standards

The study was approved by the ethics commission of the Klinikum rechts der Isar, Technical University of Munich.

Informed consent

Informed consent was obtained from all individuals included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schirmer, L., Worthington, V., Solloch, U. et al. Higher frequencies of HLA DQB1*05:01 and anti-glycosphingolipid antibodies in a cluster of severe Guillain–Barré syndrome. J Neurol 263, 2105–2113 (2016). https://doi.org/10.1007/s00415-016-8237-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-016-8237-6

Keywords

Navigation