Skip to main content

Advertisement

Log in

Arterial spin labeling perfusion predicts longitudinal decline in semantic variant primary progressive aphasia

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The objective of the study was to evaluate the prognostic value of regional cerebral blood flow (CBF) measured by arterial spin labeled (ASL) perfusion MRI in patients with semantic variant primary progressive aphasia (svPPA). We acquired pseudo-continuous ASL (pCASL) MRI and whole-brain T1-weighted structural MRI in svPPA patients (N = 13) with cerebrospinal fluid biomarkers consistent with frontotemporal lobar degeneration pathology. Follow-up T1-weighted MRI was available in a subset of patients (N = 8). We performed whole-brain comparisons of partial volume-corrected CBF and cortical thickness between svPPA and controls, and compared baseline and follow-up cortical thickness in regions of significant hypoperfusion and hyperperfusion. Patients with svPPA showed partial volume-corrected hypoperfusion relative to controls in left temporal lobe and insula. svPPA patients also had typical cortical thinning in anterior temporal, insula, and inferior frontal regions at baseline. Volume-corrected hypoperfusion was seen in areas of significant cortical thinning such as the left temporal lobe and insula. Additional regions of hypoperfusion corresponded to areas without cortical thinning. We also observed regions of hyperperfusion, some associated with cortical thinning and others without cortical thinning, including right superior temporal, inferior parietal, and orbitofrontal cortices. Regions of hypoperfusion and hyperperfusion near cortical thinning at baseline had significant longitudinal thinning between baseline and follow-up scans, but perfusion changes in distant areas did not show progressive thinning. Our findings suggest ASL MRI may be sensitive to functional changes not readily apparent in structural MRI, and specific changes in perfusion may be prognostic markers of disease progression in a manner consistent with cell-to-cell spreading pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hodges JR, Patterson K, Oxbury S, Funnell E (1992) Semantic dementia: progressive fluent aphasia with temporal lobe atrophy. Brain 115:1783–1806

    Article  PubMed  Google Scholar 

  2. Grossman M, McMillan C, Moore P et al (2004) What’s in a name: voxel-based morphometric analyses of MRI and naming difficulty in Alzheimer’s disease, frontotemporal dementia and corticobasal degeneration. Brain 127:628–649. doi:10.1093/brain/awh075

    Article  PubMed  Google Scholar 

  3. Whitwell JL, Avula R, Senjem ML et al (2010) Gray and white matter water diffusion in the syndromic variants of frontotemporal dementia. Neurology 74:1279–1287. doi:10.1212/WNL.0b013e3181d9edde

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Drzezga A, Grimmer T, Henriksen G et al (2008) Imaging of amyloid plaques and cerebral glucose metabolism in semantic dementia and Alzheimer’s disease. Neuroimage 39:619–633. doi:10.1016/j.neuroimage.2007.09.020

    Article  PubMed  Google Scholar 

  5. Diehl J, Grimmer T, Drzezga A et al (2004) Cerebral metabolic patterns at early stages of frontotemporal dementia and semantic dementia. A PET study. Neurobiol Aging 25:1051–1056. doi:10.1016/j.neurobiolaging.2003.10.007

    Article  CAS  PubMed  Google Scholar 

  6. Desgranges B, Matuszewski V, Piolino P et al (2007) Anatomical and functional alterations in semantic dementia: a voxel-based MRI and PET study. Neurobiol Aging 28:1904–1913. doi:10.1016/j.neurobiolaging.2006.08.006

    Article  PubMed  Google Scholar 

  7. Nestor PJ, Fryer TD, Hodges JR (2006) Declarative memory impairments in Alzheimer’s disease and semantic dementia. Neuroimage 30:1010–1020. doi:10.1016/j.neuroimage.2005.10.008

    Article  PubMed  Google Scholar 

  8. Guo CC, Gorno-Tempini ML, Gesierich B et al (2013) Anterior temporal lobe degeneration produces widespread network-driven dysfunction. Brain 136:2979–2991. doi:10.1093/brain/awt222

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rohrer JD, McNaught E, Foster J et al (2008) Tracking progression in frontotemporal lobar degeneration: serial MRI in semantic dementia. Neurology 71:1445–1451. doi:10.1212/01.wnl.0000327889.13734.cd

    Article  CAS  PubMed  Google Scholar 

  10. Corouge I, Esquevin A, Lejeune F, et al. (2012) Arterial spin labeling at 3T in semantic dementia: perfusion abnormalities detection and comparison with FDG-PET. Med Image Comput Comput Interv 2012 Workshop Nov Biomark Alzheimer’s Dis Relat Disord 32–40

  11. Detre JA, Rao H, Wang DJJ et al (2012) Applications of arterial spin labeled MRI in the brain. J Magn Reson Imaging 35:1026–1037. doi:10.1002/jmri.23581

    Article  PubMed  PubMed Central  Google Scholar 

  12. Du AT, Jahng GH, Hayasaka S et al (2006) Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI. Neurology 67:1215–1220. doi:10.1212/01.wnl.0000238163.71349.78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alsop DC, Dai W, Grossman M, Detre JA (2010) Arterial spin labeling blood flow MRI: its role in the early characterization of Alzheimer’s disease. J Alzheimer’s Dis 20:871–880. doi:10.3233/JAD-2010-091699

    Google Scholar 

  14. Hu WT, Wang Z, Lee VM-Y et al (2010) Distinct cerebral perfusion patterns in FTLD and AD. Neurology 75:881–888. doi:10.1212/WNL.0b013e3181f11e35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kandel BM, Wang DJJ, Detre JA et al (2015) Decomposing cerebral blood flow MRI into functional and structural components: a non-local approach based on prediction. Neuroimage 105:156–170. doi:10.1016/j.neuroimage.2014.10.052

    Article  PubMed  Google Scholar 

  16. Nestor PJ, Graham NL, Fryer TD et al (2003) Progressive non-fluent aphasia is associated with hypometabolism centred on the left anterior insula. Brain 126:2406–2418. doi:10.1093/brain/awg240

    Article  PubMed  Google Scholar 

  17. Baron JC, Bousser MG, Comar D, Castaigne P (1981) “Crossed cerebellar diaschisis” in human supratentorial brain infarction. Trans Am Neurol Assoc 105:459–461

    CAS  PubMed  Google Scholar 

  18. Zhou J, Gennatas ED, Kramer JH et al (2012) Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron 73:1216–1227. doi:10.1016/j.neuron.2012.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jucker M, Walker LC (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501:45–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Crossley NA, Mechelli A, Scott J et al (2014) The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 137:2382–2395. doi:10.1093/brain/awu132

    Article  PubMed  PubMed Central  Google Scholar 

  21. Buckner RL, Sepulcre J, Talukdar T et al (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29:1860–1873. doi:10.1523/JNEUROSCI.5062-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu W-C, Fernández-Seara M, Detre JA et al (2007) A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling. Magn Reson Med 58:1020–1027. doi:10.1002/mrm.21403

    Article  PubMed  Google Scholar 

  23. Gorno-Tempini ML, Hillis AE, Weintraub S et al (2011) Classification of primary progressive aphasia and its variants. Neurology 76:1006–1014. doi:10.1212/WNL.0b013e31821103e6

    Article  PubMed  PubMed Central  Google Scholar 

  24. Irwin DJ, McMillan CT, Toledo JB et al (2012) Comparison of cerebrospinal fluid levels of tau and Aβ 1-42 in Alzheimer disease and frontotemporal degeneration using 2 analytical platforms. Arch Neurol 69:1018–1025. doi:10.1001/archneurol.2012.26

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tustison NJ, Cook PA, Klein A et al (2014) Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. Neuroimage 99:166–179. doi:10.1016/j.neuroimage.2014.05.044

    Article  PubMed  Google Scholar 

  26. Klein A, Ghosh SS, Avants B et al (2010) Evaluation of volume-based and surface-based brain image registration methods. Neuroimage 51:214–220. doi:10.1016/j.neuroimage.2010.01.091

    Article  PubMed  PubMed Central  Google Scholar 

  27. Avants BB, Epstein CL, Grossman M, Gee JC (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12:26–41. doi:10.1016/j.media.2007.06.004

    Article  CAS  PubMed  Google Scholar 

  28. Avants BB, Tustison N, Song G, Cook P (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54:2033–2044. doi:10.1016/j.neuroimage.2010.09.025

    Article  PubMed  Google Scholar 

  29. Das SRSSR, Avants BB, Grossman M, Gee JCJ (2009) Registration based cortical thickness measurement. Neuroimage 45:867–879. doi:10.1016/j.neuroimage.2008.12.016.Registration

    Article  PubMed  Google Scholar 

  30. Satterthwaite TD, Shinohara RT, Wolf DH et al (2014) Impact of puberty on the evolution of cerebral perfusion during adolescence. Proc Natl Acad Sci USA 111:8643–8648. doi:10.1073/pnas.1400178111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Avants BB, Lakshmikanth SK, Duda JT et al (2012) Robust cerebral blood flow reconstruction from perfusion imaging with an open-source, multi-platform toolkit. Proc Perfus MRI Stand Beyond CBF Everyday Clin Appl Int Soc Magn Reson Med Sci Workshop 21:21

    Google Scholar 

  32. Johnson NA, Jahng G-H, Weiner MW et al (2005) Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology 234:851–859. doi:10.1148/radiol.2343040197

    Article  PubMed  PubMed Central  Google Scholar 

  33. Winkler AM, Ridgway GR, Webster MA et al (2014) Permutation inference for the general linear model. Neuroimage 92:381–397. doi:10.1016/j.neuroimage.2014.01.060

    Article  PubMed  PubMed Central  Google Scholar 

  34. Newhart M, Ken L, Kleinman JT et al (2007) Neural networks essential for naming and word comprehension. Cogn Behav Neurol 20:25–30. doi:10.1097/WNN.0b013e31802dc4a7

    Article  PubMed  Google Scholar 

  35. Friederici A, Rueschemeyer S (2003) The role of left inferior frontal and superior temporal cortex in sentence comprehension: localizing syntactic and semantic processes. Cereb Cortex 13:170–177

    Article  PubMed  Google Scholar 

  36. Bolling DZ, Pitskel NB, Deen B et al (2011) Dissociable brain mechanisms for processing social exclusion and rule violation. Neuroimage 54:2462–2471. doi:10.1016/j.neuroimage.2010.10.049.Dissociable

    Article  PubMed  Google Scholar 

  37. Furl N, Averbeck BB (2011) Parietal cortex and insula relate to evidence seeking relevant to reward-related decisions. J Neurosci 31:17572–17582. doi:10.1523/JNEUROSCI.4236-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim E-J, Sidhu M, Gaus SE et al (2012) Selective frontoinsular von economo neuron and fork cell loss in early behavioral variant frontotemporal dementia. Cereb Cortex 22:251–259. doi:10.1093/cercor/bhr004

    Article  PubMed  Google Scholar 

  39. Rosen HJ, Gorno-Tempini ML, Goldman WP et al (2002) Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology 58:198–208. doi:10.1212/WNL.58.2.198

    Article  CAS  PubMed  Google Scholar 

  40. Dukart J, Mueller K, Horstmann A et al (2010) Differential effects of global and cerebellar normalization on detection and differentiation of dementia in FDG-PET studies. Neuroimage 49:1490–1495. doi:10.1016/j.neuroimage.2009.09.017

    Article  PubMed  Google Scholar 

  41. Edwards-Lee T, Miller BL, Benson DF et al (1997) The temporal variant of frontotemporal dementia. Brain 120:1027–1040

    Article  PubMed  Google Scholar 

  42. Andoh J, Martinot J-L (2008) Interhemispheric compensation: a hypothesis of TMS-induced effects on language-related areas. Eur psychiatry 23:281–288. doi:10.1016/j.eurpsy.2007.10.012

    Article  PubMed  Google Scholar 

  43. Halpern CH, Glosser G, Clark R et al (2004) Dissociation of numbers and objects in corticobasal degeneration and semantic dementia. Neurology 62:1163–1169

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Institutes of Health: AG017586, AG043503, AG015116, NS044266, AG032953, the Wyncote Foundation, and the Arking Family Foundation. Open-source ANTs software, available at https://github.com/stnava/ANTs, was used to process T1 and pCASL images. No funding source played a role in the study design, in the collection, analysis and interpretation of the data, in the writing of the report, or in the decision to submit the paper for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corey T. McMillan.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical standard statement

Prior to inclusion in the study, all participants participated in a written informed consent procedure under a protocol approved by the Institutional Review Board at the University of Pennsylvania in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olm, C.A., Kandel, B.M., Avants, B.B. et al. Arterial spin labeling perfusion predicts longitudinal decline in semantic variant primary progressive aphasia. J Neurol 263, 1927–1938 (2016). https://doi.org/10.1007/s00415-016-8221-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-016-8221-1

Keywords

Navigation