Skip to main content

Taste dysfunction in multiple sclerosis

Abstract

Empirical studies of taste function in multiple sclerosis (MS) are rare. Moreover, a detailed assessment of whether quantitative measures of taste function correlate with the punctate and patchy myelin-related lesions found throughout the CNS of MS patients has not been made. We administered a 96-trial test of sweet (sucrose), sour (citric acid), bitter (caffeine) and salty (NaCl) taste perception to the left and right anterior (CN VII) and posterior (CN IX) tongue regions of 73 MS patients and 73 matched controls. The number and volume of lesions were assessed using quantitative MRI in 52 brain regions of 63 of the MS patients. Taste identification scores were significantly lower in the MS patients for sucrose (p = 0.0002), citric acid (p = 0.0001), caffeine (p = 0.0372) and NaCl (p = 0.0004) and were present in both anterior and posterior tongue regions. The percent of MS patients with identification scores falling below the 5th percentile of controls was 15.07 % for caffeine, 21.9 % for citric acid, 24.66 % for sucrose, and 31.50 % for NaCl. Such scores were inversely correlated with lesion volumes in the temporal, medial frontal, and superior frontal lobes, and with the number of lesions in the left and right superior frontal lobes, right anterior cingulate gyrus, and left parietal operculum. Regardless of the subject group, women outperformed men on the taste measures. These findings indicate that a sizable number of MS patients exhibit taste deficits that are associated with MS-related lesions throughout the brain.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Sorgun MH, Yucesan C, Tegin C (2014) Is malnutrition a problem for multiple sclerosis patients? J Clin Neurosci 21:1603–1605

    Article  PubMed  Google Scholar 

  2. 2.

    Müller R (1949) Studies on disseminated sclerosis with special reference to symptomatology, course and prognosis. Acta Med Scand Suppl 20:68–75

    Google Scholar 

  3. 3.

    Kurtzke JF, Beebe GW, Nagler B, Auth TL, Kurland LT, Nefzger MD (1972) Studies on the natural history of multiple sclerosis. Act Neurol Scand 48:19–46

    CAS  Article  Google Scholar 

  4. 4.

    Kahana E, Leibowitz U, Alter M (1973) Brainstem and cranial nerve involvement in multiple sclerosis. Act Neurol Scand 49:269–279

    CAS  Article  Google Scholar 

  5. 5.

    Wender M, Szmeja Z (1971) Badanie sluchu, czynnosci narzadu przedsionkowego, smaku I wechu u chorych na stwardnienie rozsiane. Neurol Neurochir Pol 5:179–184

    CAS  PubMed  Google Scholar 

  6. 6.

    Bromley SM, Doty RL (2015) Clinical disorders affecting taste: an update. In: RL Doty (ed) Handbook of Olfaction and Gustation. John Wiley Sons, Hoboken, pp 887–910

    Chapter  Google Scholar 

  7. 7.

    Deems DA, Doty RL, Settle RG, Moore-Gillon V, Shaman P, Mester AF, Kimmelman CP, Brightman VJ, Snow JB Jr (1991) Smell and taste disorders, a study of 750 patients from the University of Pennsylvania Smell and Taste Center. Arch Otolaryngol Head Neck Surg 117:519–528

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Soter A, Kim J, Jackman A, Tourbier I, Kaul A, Doty RL (2008) Accuracy of self-report in detecting taste dysfunction. Laryngoscope 118:611–617

    Article  PubMed  Google Scholar 

  9. 9.

    Rollin H (1976) Gustatory disturbances in multiple sclerosis. Laryngol Rhinol Otol 55:678–681 (German)

    CAS  Google Scholar 

  10. 10.

    Dahlslett SB, Goektas O, Schmidt F, Harms L, Olze H, Fleiner F (2012) Psychophysiological and electrophysiological testing of olfactory and gustatory function in patients with multiple sclerosis. Eur Arch Otorhinolaryngol 269:1163–1169

    Article  PubMed  Google Scholar 

  11. 11.

    Fleiner F, Dahlslett SB, Schmidt F, Harms L, Goektas O (2010) Olfactory and gustatory function in patients with multiple sclerosis. Am J Rhinol Allergy 24:e93–e97

    Article  PubMed  Google Scholar 

  12. 12.

    Schmidt FA, Goktas O, Harms L, Bohner G, Erb K, Dahlslett B, Fleiner F (2011) Structural correlates of taste and smell loss in encephalitis disseminata. PLoS One 6:e19702

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Doty RL, Tourbier I, Davis S, Rotz J, Cuzzocreo JL, Treem J, Shephard N, Pham DL (2012) Pure-tone auditory thresholds are not chronically elevated in multiple sclerosis. Behav Neurosci 126:314–324

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Doty RL, Haxel BR (2005) Objective assessment of terbinafine-induced taste loss. Laryngoscope 115:2035–2037

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Stinton N, Atif MA, Barkat N, Doty RL (2010) Influence of smell loss on taste function. Behav Neurosci 124:256–264

    Article  PubMed  Google Scholar 

  16. 16.

    Doty RL, Cometto-Muniz JE, Jalowayski AA, Dalton P, Kendal-Reed M, Hodgson M (2004) Assessment of upper respiratory tract and ocular irritative effects of volatile chemicals in humans. Crit Rev Toxicol 34:85–142

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Goldszal AF, Davatzikos C, Pham DL, Yan MX, Bryan RN, Resnick SM (1998) An image-processing system for qualitative and quantitative volumetric analysis of brain images. J Comput Assist Tomogr 22:827–837

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Bazin PL, Cuzzocreo JL, Yassa MA, Gandler W, McAuliffe MJ, Bassett SS, Pham DL (2007) Volumetric neuroimage analysis extensions for the MIPAV software package. J Neurosci Methods 165:111–121

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Pham DL, Prince JL (1999) Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans Med Imaging 18:737–752

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Pham DL (2001) Spatial models for fuzzy clustering. Comput Med Imaging Graph 84:285–297

    Google Scholar 

  21. 21.

    Van Leemput K, Maes F, Vandermeulen D, Colchester A, Suetens P (2001) Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE Trans Med Imaging 20:677–688

    Article  PubMed  Google Scholar 

  22. 22.

    Van LK, Maes F, Vandermeulen D, Colchester A, Suetens P (2001) Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE Trans Med Imaging 20:677–688

    Article  Google Scholar 

  23. 23.

    Shen D, Davatzikos C (2002) HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans Med Imaging 21:1421–1439

    Article  PubMed  Google Scholar 

  24. 24.

    Wilkinson L (1990) SYSTAT: the system for statistics. SYSTAT, Inc., Evanston

    Google Scholar 

  25. 25.

    Perneger TV (1998) What’s wrong with Bonferroni adjustments. BMJ 316:1236–1238

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Rothman KJ (1990) No adjustments are needed for multiple comparisons. Epidemiology 1:43–46

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Onoda K, Ikeda M (1999) Gustatory disturbance due to cerebrovascular disorder. Laryngoscope 109:123–128

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Shikama Y, Kato T, Nagaoka U, Hosoya T, Katagiri T, Yamaguchi K, Sasaki H (1996) Localization of the gustatory pathway in the human midbrain. Neurosci Lett 218:198–200

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    McMahon EJ, Campbell KL, Bauer JD (2014) Taste perception in kidney disease and relationship to dietary sodium intake. Appetite 83:236–241

    Article  PubMed  Google Scholar 

  30. 30.

    Doty RL (1978) Gender and reproductive state correlates of taste perception in humans. In: McGill TE, Dewsbury DA, Sachs BD (eds) Sex and behavior: status and prospectus. Plenum, New York, pp 337–362

    Chapter  Google Scholar 

  31. 31.

    Bartoshuk LM, Duffy VB, Miller IJ (1994) PTC/PROP tasting: anatomy, psychophysics, and sex effects. Physiol Behav 56:1165–1171

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Brass SD, Zivadinov R, Bakshi R (2008) Acute demyelinating optic neuritis: a review. Front Biosci 13:2376–2390

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Grénman R (1985) Involvement of the audiovestibular system in multiple sclerosis. An otoneurologic and audiologic study. Acta Otolaryngol Suppl 420:1–95

    PubMed  Google Scholar 

  34. 34.

    Lee J, Tucker RM, Tan SY, Running CA, Jones JB, Mattes RD (2015) Nutritional implications of taste and smell dysfunction. In: Doty RL (ed) Handbook of olfaction and gustation. Wiley, New York, pp 831–863

    Google Scholar 

  35. 35.

    Devanand DP, Lee S, Manly J, Andrews H, Schupf N, Masurkar A, Stern Y, Mayeux R, Doty RL (2015) Olfactory identification deficits and increased mortality in the community. Ann Neurol 78:401–411

    Article  PubMed  Google Scholar 

  36. 36.

    Solemdal K, Moinichen-Berstad C, Mowe M, Hummel T, Sandvik L (2014) Impaired taste and increased mortality in acutely hospitalized older people. Chem Senses 39:263–269

    Article  PubMed  Google Scholar 

  37. 37.

    Catalanotto FA, Dore-Duffy P, Donaldson JO, Testa M, Peterson M, Ostrom KM (1984) Quality-specific taste changes in multiple sclerosis. Ann Neurol 16:611–615

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Small DM, Gregory MD, Mak YE, Gitelman D, Mesulam MM, Parrish T (2003) Dissociation of neural representation of intensity and affective valuation in human gustation. Neuron 39:701–711

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Rovee CK, Cohen RY, Shlapack W (1975) Life-span stability in olfactory sensitivity. Dev Psychol 11:311–318

    Article  Google Scholar 

  40. 40.

    Methven L, Allen VJ, Withers CA, Gosney MA (2012) Ageing and taste. Proc Nutr Soc 71:1–10

    Article  Google Scholar 

  41. 41.

    Onoda K, Kobayakawa T, Ikeda M, Saito S, Kida A (2005) Laterality of human primary gustatory cortex studied by MEG. Chem Senses 30:657–666

    Article  PubMed  Google Scholar 

  42. 42.

    Tsivgoulis G, Ioannis H, Vadikolias K, Galetta SL, Piperidou C (2011) Bilateral ageusia caused by a unilateral midbrain and thalamic infarction. J Neuroimaging 21:263–265

    Article  PubMed  Google Scholar 

  43. 43.

    Nakajima M, Ohtsuki T, Minematsu K (2010) Bilateral hypogeusia in a patient with a unilateral paramedian thalamic infarction. J Neurol Neurosurg Psychiatry 81:700–701

    Article  PubMed  Google Scholar 

  44. 44.

    Yildiz M, Tettenborn B, Radue EW, Bendfeldt K, Borgwardt S (2014) Association of cognitive impairment and lesion volumes in multiple sclerosis–a MRI study. Clin Neurol Neurosurg 127:54–58

    Article  PubMed  Google Scholar 

  45. 45.

    Lund H, Jonsson A, Andresen J, Rostrup E, Paulson OB, Sorensen PS (2012) Cognitive deficits in multiple sclerosis: correlations with T2 changes in normal appearing brain tissue. Acta Neurol Scand 125:338–344

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Harrison DM, Roy S, Oh J, Izbudak I, Pham D, Courtney S, Caffo B, Jones CK, van Zijl P, Calabresi PA (2015) Association of cortical lesion burden on 7-T magnetic resonance imaging with cognition and disability in multiple sclerosis. JAMA Neurol 72:1004–1012

    Article  PubMed  Google Scholar 

  47. 47.

    Dolezal O, Dwyer MG, Horakova D, Havrdova E, Minagar A, Balachandran S, Bergsland N, Seidl Z, Vaneckova M, Fritz D, Krasensky J, Zivadinov R (2007) Detection of cortical lesions is dependent on choice of slice thickness in patients with multiple sclerosis. Int Rev Neurobiol 79:475–489

    Article  PubMed  Google Scholar 

  48. 48.

    Reddy H, Narayanan S, Arnoutelis R, Jenkinson M, Antel J, Matthews PM, Arnold DL (2000) Evidence for adaptive functional changes in the cerebral cortex with axonal injury from multiple sclerosis. Brain 123(Pt 11):2314–2320

    Article  PubMed  Google Scholar 

  49. 49.

    Loevner LA, Grossman RI, Cohen JA, Lexa FJ, Kessler D, Kolson DL (1995) Microscopic disease in normal-appearing white matter on conventional MR images in patients with multiple sclerosis: assessment with magnetization-transfer measurements. Radiology 196:511–515

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Gasperini C, Horsfield MA, Thorpe JW, Kidd D, Barker GJ, Tofts PS, MacManus DG, Thompson AJ, Miller DH, McDonald WI (1996) Macroscopic and microscopic assessments of disease burden by MRI in multiple sclerosis: relationship to clinical parameters. J Magn Reson Imaging 6:580–584

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Chaudhari N, Roper SD (2010) The cell biology of taste. J Cell Biol 190:285–296

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS (2006) The receptors and cells for mammalian taste. Nature 444:288–294

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Meyerhof W, Batram C, Kuhn C, Brockhoff A, Chudoba E, Bufe B, Appendino G, Behrens M (2010) The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses 35:157–170

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Roudnitzky N, Bufe B, Thalmann S, Kuhn C, Gunn HC, Xing C, Crider BP, Behrens M, Meyerhof W, Wooding SP (2011) Genomic, genetic and functional dissection of bitter taste responses to artificial sweeteners. Hum Mol Genet 20:3437–3449

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Schattling B, Steinbach K, Thies E, Kruse M, Menigoz A, Ufer F, Flockerzi V, Bruck W, Pongs O, Vennekens R, Kneussel M, Freichel M, Merkler D, Friese MA (2012) TRPM4 cation channel mediates axonal and neuronal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med 18:1805–1811

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Bouafia A, Golmard JL, Thuries V, Sazdovitch V, Hauw JJ, Fontaine B, Seilhean D (2014) Axonal expression of sodium channels and neuropathology of the plaques in multiple sclerosis. Neuropathol Appl Neurobiol 40:579–590

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Velle W (1987) Sex differences in sensory functions. Perspect Biol Med 30:490–522

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Goldstein JM, Seidman LJ, Horton NJ, Makris N, Kennedy DN, Caviness VS Jr, Faraone SV, Tsuang MT (2001) Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex 11:490–497

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Ochoa-Reparaz J, Mielcarz DW, Begum-Haque S, Kasper LH (2011) Gut, bugs, and brain: role of commensal bacteria in the control of central nervous system disease. Ann Neurol 69:240–247

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to the subjects who participated in this study. We thank Nancy A. Lee, M.D., Andre S. Souza, M.D., and Hussam Tallab, M.D., for their contributions to this work, and Greg Smutzer, Ph.D., for comments on an earlier version of the manuscript. Special thanks goes out to Inna Chung, who played a significant role in preparing the manuscript for journal submission. This research was supported by the U.S. National Institutes of Health Grants RO1 DC 02974 (Doty), R01 NS 37172 (Doty), and R01 NS070906 (Pham).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard L. Doty.

Ethics declarations

Conflicts of interest

None of the authors of this study declare any conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Doty, R.L., Tourbier, I.A., Pham, D.L. et al. Taste dysfunction in multiple sclerosis. J Neurol 263, 677–688 (2016). https://doi.org/10.1007/s00415-016-8030-6

Download citation

Keywords

  • Multiple sclerosis
  • Magnetic resonance imaging
  • Taste
  • Chemosensory transduction
  • Taste disorders
  • Sex differences