Journal of Neurology

, Volume 263, Issue 4, pp 677–688 | Cite as

Taste dysfunction in multiple sclerosis

  • Richard L. Doty
  • Isabelle A. Tourbier
  • Dzung L. Pham
  • Jennifer L. Cuzzocreo
  • Jayaram K. Udupa
  • Bilge Karacali
  • Evan Beals
  • Laura Fabius
  • Fidias E. Leon-Sarmiento
  • Gul Moonis
  • Taehoon Kim
  • Toru Mihama
  • Rena J. Geckle
  • David M. Yousem
Original Communication


Empirical studies of taste function in multiple sclerosis (MS) are rare. Moreover, a detailed assessment of whether quantitative measures of taste function correlate with the punctate and patchy myelin-related lesions found throughout the CNS of MS patients has not been made. We administered a 96-trial test of sweet (sucrose), sour (citric acid), bitter (caffeine) and salty (NaCl) taste perception to the left and right anterior (CN VII) and posterior (CN IX) tongue regions of 73 MS patients and 73 matched controls. The number and volume of lesions were assessed using quantitative MRI in 52 brain regions of 63 of the MS patients. Taste identification scores were significantly lower in the MS patients for sucrose (p = 0.0002), citric acid (p = 0.0001), caffeine (p = 0.0372) and NaCl (p = 0.0004) and were present in both anterior and posterior tongue regions. The percent of MS patients with identification scores falling below the 5th percentile of controls was 15.07 % for caffeine, 21.9 % for citric acid, 24.66 % for sucrose, and 31.50 % for NaCl. Such scores were inversely correlated with lesion volumes in the temporal, medial frontal, and superior frontal lobes, and with the number of lesions in the left and right superior frontal lobes, right anterior cingulate gyrus, and left parietal operculum. Regardless of the subject group, women outperformed men on the taste measures. These findings indicate that a sizable number of MS patients exhibit taste deficits that are associated with MS-related lesions throughout the brain.


Multiple sclerosis Magnetic resonance imaging Taste Chemosensory transduction Taste disorders Sex differences 


  1. 1.
    Sorgun MH, Yucesan C, Tegin C (2014) Is malnutrition a problem for multiple sclerosis patients? J Clin Neurosci 21:1603–1605CrossRefPubMedGoogle Scholar
  2. 2.
    Müller R (1949) Studies on disseminated sclerosis with special reference to symptomatology, course and prognosis. Acta Med Scand Suppl 20:68–75Google Scholar
  3. 3.
    Kurtzke JF, Beebe GW, Nagler B, Auth TL, Kurland LT, Nefzger MD (1972) Studies on the natural history of multiple sclerosis. Act Neurol Scand 48:19–46CrossRefGoogle Scholar
  4. 4.
    Kahana E, Leibowitz U, Alter M (1973) Brainstem and cranial nerve involvement in multiple sclerosis. Act Neurol Scand 49:269–279CrossRefGoogle Scholar
  5. 5.
    Wender M, Szmeja Z (1971) Badanie sluchu, czynnosci narzadu przedsionkowego, smaku I wechu u chorych na stwardnienie rozsiane. Neurol Neurochir Pol 5:179–184PubMedGoogle Scholar
  6. 6.
    Bromley SM, Doty RL (2015) Clinical disorders affecting taste: an update. In: RL Doty (ed) Handbook of Olfaction and Gustation. John Wiley Sons, Hoboken, pp 887–910CrossRefGoogle Scholar
  7. 7.
    Deems DA, Doty RL, Settle RG, Moore-Gillon V, Shaman P, Mester AF, Kimmelman CP, Brightman VJ, Snow JB Jr (1991) Smell and taste disorders, a study of 750 patients from the University of Pennsylvania Smell and Taste Center. Arch Otolaryngol Head Neck Surg 117:519–528CrossRefPubMedGoogle Scholar
  8. 8.
    Soter A, Kim J, Jackman A, Tourbier I, Kaul A, Doty RL (2008) Accuracy of self-report in detecting taste dysfunction. Laryngoscope 118:611–617CrossRefPubMedGoogle Scholar
  9. 9.
    Rollin H (1976) Gustatory disturbances in multiple sclerosis. Laryngol Rhinol Otol 55:678–681 (German) Google Scholar
  10. 10.
    Dahlslett SB, Goektas O, Schmidt F, Harms L, Olze H, Fleiner F (2012) Psychophysiological and electrophysiological testing of olfactory and gustatory function in patients with multiple sclerosis. Eur Arch Otorhinolaryngol 269:1163–1169CrossRefPubMedGoogle Scholar
  11. 11.
    Fleiner F, Dahlslett SB, Schmidt F, Harms L, Goektas O (2010) Olfactory and gustatory function in patients with multiple sclerosis. Am J Rhinol Allergy 24:e93–e97CrossRefPubMedGoogle Scholar
  12. 12.
    Schmidt FA, Goktas O, Harms L, Bohner G, Erb K, Dahlslett B, Fleiner F (2011) Structural correlates of taste and smell loss in encephalitis disseminata. PLoS One 6:e19702CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Doty RL, Tourbier I, Davis S, Rotz J, Cuzzocreo JL, Treem J, Shephard N, Pham DL (2012) Pure-tone auditory thresholds are not chronically elevated in multiple sclerosis. Behav Neurosci 126:314–324CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Doty RL, Haxel BR (2005) Objective assessment of terbinafine-induced taste loss. Laryngoscope 115:2035–2037CrossRefPubMedGoogle Scholar
  15. 15.
    Stinton N, Atif MA, Barkat N, Doty RL (2010) Influence of smell loss on taste function. Behav Neurosci 124:256–264CrossRefPubMedGoogle Scholar
  16. 16.
    Doty RL, Cometto-Muniz JE, Jalowayski AA, Dalton P, Kendal-Reed M, Hodgson M (2004) Assessment of upper respiratory tract and ocular irritative effects of volatile chemicals in humans. Crit Rev Toxicol 34:85–142CrossRefPubMedGoogle Scholar
  17. 17.
    Goldszal AF, Davatzikos C, Pham DL, Yan MX, Bryan RN, Resnick SM (1998) An image-processing system for qualitative and quantitative volumetric analysis of brain images. J Comput Assist Tomogr 22:827–837CrossRefPubMedGoogle Scholar
  18. 18.
    Bazin PL, Cuzzocreo JL, Yassa MA, Gandler W, McAuliffe MJ, Bassett SS, Pham DL (2007) Volumetric neuroimage analysis extensions for the MIPAV software package. J Neurosci Methods 165:111–121CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Pham DL, Prince JL (1999) Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans Med Imaging 18:737–752CrossRefPubMedGoogle Scholar
  20. 20.
    Pham DL (2001) Spatial models for fuzzy clustering. Comput Med Imaging Graph 84:285–297Google Scholar
  21. 21.
    Van Leemput K, Maes F, Vandermeulen D, Colchester A, Suetens P (2001) Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE Trans Med Imaging 20:677–688CrossRefPubMedGoogle Scholar
  22. 22.
    Van LK, Maes F, Vandermeulen D, Colchester A, Suetens P (2001) Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE Trans Med Imaging 20:677–688CrossRefGoogle Scholar
  23. 23.
    Shen D, Davatzikos C (2002) HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans Med Imaging 21:1421–1439CrossRefPubMedGoogle Scholar
  24. 24.
    Wilkinson L (1990) SYSTAT: the system for statistics. SYSTAT, Inc., EvanstonGoogle Scholar
  25. 25.
    Perneger TV (1998) What’s wrong with Bonferroni adjustments. BMJ 316:1236–1238CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rothman KJ (1990) No adjustments are needed for multiple comparisons. Epidemiology 1:43–46CrossRefPubMedGoogle Scholar
  27. 27.
    Onoda K, Ikeda M (1999) Gustatory disturbance due to cerebrovascular disorder. Laryngoscope 109:123–128CrossRefPubMedGoogle Scholar
  28. 28.
    Shikama Y, Kato T, Nagaoka U, Hosoya T, Katagiri T, Yamaguchi K, Sasaki H (1996) Localization of the gustatory pathway in the human midbrain. Neurosci Lett 218:198–200CrossRefPubMedGoogle Scholar
  29. 29.
    McMahon EJ, Campbell KL, Bauer JD (2014) Taste perception in kidney disease and relationship to dietary sodium intake. Appetite 83:236–241CrossRefPubMedGoogle Scholar
  30. 30.
    Doty RL (1978) Gender and reproductive state correlates of taste perception in humans. In: McGill TE, Dewsbury DA, Sachs BD (eds) Sex and behavior: status and prospectus. Plenum, New York, pp 337–362CrossRefGoogle Scholar
  31. 31.
    Bartoshuk LM, Duffy VB, Miller IJ (1994) PTC/PROP tasting: anatomy, psychophysics, and sex effects. Physiol Behav 56:1165–1171CrossRefPubMedGoogle Scholar
  32. 32.
    Brass SD, Zivadinov R, Bakshi R (2008) Acute demyelinating optic neuritis: a review. Front Biosci 13:2376–2390CrossRefPubMedGoogle Scholar
  33. 33.
    Grénman R (1985) Involvement of the audiovestibular system in multiple sclerosis. An otoneurologic and audiologic study. Acta Otolaryngol Suppl 420:1–95PubMedGoogle Scholar
  34. 34.
    Lee J, Tucker RM, Tan SY, Running CA, Jones JB, Mattes RD (2015) Nutritional implications of taste and smell dysfunction. In: Doty RL (ed) Handbook of olfaction and gustation. Wiley, New York, pp 831–863Google Scholar
  35. 35.
    Devanand DP, Lee S, Manly J, Andrews H, Schupf N, Masurkar A, Stern Y, Mayeux R, Doty RL (2015) Olfactory identification deficits and increased mortality in the community. Ann Neurol 78:401–411CrossRefPubMedGoogle Scholar
  36. 36.
    Solemdal K, Moinichen-Berstad C, Mowe M, Hummel T, Sandvik L (2014) Impaired taste and increased mortality in acutely hospitalized older people. Chem Senses 39:263–269CrossRefPubMedGoogle Scholar
  37. 37.
    Catalanotto FA, Dore-Duffy P, Donaldson JO, Testa M, Peterson M, Ostrom KM (1984) Quality-specific taste changes in multiple sclerosis. Ann Neurol 16:611–615CrossRefPubMedGoogle Scholar
  38. 38.
    Small DM, Gregory MD, Mak YE, Gitelman D, Mesulam MM, Parrish T (2003) Dissociation of neural representation of intensity and affective valuation in human gustation. Neuron 39:701–711CrossRefPubMedGoogle Scholar
  39. 39.
    Rovee CK, Cohen RY, Shlapack W (1975) Life-span stability in olfactory sensitivity. Dev Psychol 11:311–318CrossRefGoogle Scholar
  40. 40.
    Methven L, Allen VJ, Withers CA, Gosney MA (2012) Ageing and taste. Proc Nutr Soc 71:1–10CrossRefGoogle Scholar
  41. 41.
    Onoda K, Kobayakawa T, Ikeda M, Saito S, Kida A (2005) Laterality of human primary gustatory cortex studied by MEG. Chem Senses 30:657–666CrossRefPubMedGoogle Scholar
  42. 42.
    Tsivgoulis G, Ioannis H, Vadikolias K, Galetta SL, Piperidou C (2011) Bilateral ageusia caused by a unilateral midbrain and thalamic infarction. J Neuroimaging 21:263–265CrossRefPubMedGoogle Scholar
  43. 43.
    Nakajima M, Ohtsuki T, Minematsu K (2010) Bilateral hypogeusia in a patient with a unilateral paramedian thalamic infarction. J Neurol Neurosurg Psychiatry 81:700–701CrossRefPubMedGoogle Scholar
  44. 44.
    Yildiz M, Tettenborn B, Radue EW, Bendfeldt K, Borgwardt S (2014) Association of cognitive impairment and lesion volumes in multiple sclerosis–a MRI study. Clin Neurol Neurosurg 127:54–58CrossRefPubMedGoogle Scholar
  45. 45.
    Lund H, Jonsson A, Andresen J, Rostrup E, Paulson OB, Sorensen PS (2012) Cognitive deficits in multiple sclerosis: correlations with T2 changes in normal appearing brain tissue. Acta Neurol Scand 125:338–344CrossRefPubMedGoogle Scholar
  46. 46.
    Harrison DM, Roy S, Oh J, Izbudak I, Pham D, Courtney S, Caffo B, Jones CK, van Zijl P, Calabresi PA (2015) Association of cortical lesion burden on 7-T magnetic resonance imaging with cognition and disability in multiple sclerosis. JAMA Neurol 72:1004–1012CrossRefPubMedGoogle Scholar
  47. 47.
    Dolezal O, Dwyer MG, Horakova D, Havrdova E, Minagar A, Balachandran S, Bergsland N, Seidl Z, Vaneckova M, Fritz D, Krasensky J, Zivadinov R (2007) Detection of cortical lesions is dependent on choice of slice thickness in patients with multiple sclerosis. Int Rev Neurobiol 79:475–489CrossRefPubMedGoogle Scholar
  48. 48.
    Reddy H, Narayanan S, Arnoutelis R, Jenkinson M, Antel J, Matthews PM, Arnold DL (2000) Evidence for adaptive functional changes in the cerebral cortex with axonal injury from multiple sclerosis. Brain 123(Pt 11):2314–2320CrossRefPubMedGoogle Scholar
  49. 49.
    Loevner LA, Grossman RI, Cohen JA, Lexa FJ, Kessler D, Kolson DL (1995) Microscopic disease in normal-appearing white matter on conventional MR images in patients with multiple sclerosis: assessment with magnetization-transfer measurements. Radiology 196:511–515CrossRefPubMedGoogle Scholar
  50. 50.
    Gasperini C, Horsfield MA, Thorpe JW, Kidd D, Barker GJ, Tofts PS, MacManus DG, Thompson AJ, Miller DH, McDonald WI (1996) Macroscopic and microscopic assessments of disease burden by MRI in multiple sclerosis: relationship to clinical parameters. J Magn Reson Imaging 6:580–584CrossRefPubMedGoogle Scholar
  51. 51.
    Chaudhari N, Roper SD (2010) The cell biology of taste. J Cell Biol 190:285–296CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS (2006) The receptors and cells for mammalian taste. Nature 444:288–294CrossRefPubMedGoogle Scholar
  53. 53.
    Meyerhof W, Batram C, Kuhn C, Brockhoff A, Chudoba E, Bufe B, Appendino G, Behrens M (2010) The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses 35:157–170CrossRefPubMedGoogle Scholar
  54. 54.
    Roudnitzky N, Bufe B, Thalmann S, Kuhn C, Gunn HC, Xing C, Crider BP, Behrens M, Meyerhof W, Wooding SP (2011) Genomic, genetic and functional dissection of bitter taste responses to artificial sweeteners. Hum Mol Genet 20:3437–3449CrossRefPubMedGoogle Scholar
  55. 55.
    Schattling B, Steinbach K, Thies E, Kruse M, Menigoz A, Ufer F, Flockerzi V, Bruck W, Pongs O, Vennekens R, Kneussel M, Freichel M, Merkler D, Friese MA (2012) TRPM4 cation channel mediates axonal and neuronal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med 18:1805–1811CrossRefPubMedGoogle Scholar
  56. 56.
    Bouafia A, Golmard JL, Thuries V, Sazdovitch V, Hauw JJ, Fontaine B, Seilhean D (2014) Axonal expression of sodium channels and neuropathology of the plaques in multiple sclerosis. Neuropathol Appl Neurobiol 40:579–590CrossRefPubMedGoogle Scholar
  57. 57.
    Velle W (1987) Sex differences in sensory functions. Perspect Biol Med 30:490–522CrossRefPubMedGoogle Scholar
  58. 58.
    Goldstein JM, Seidman LJ, Horton NJ, Makris N, Kennedy DN, Caviness VS Jr, Faraone SV, Tsuang MT (2001) Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex 11:490–497CrossRefPubMedGoogle Scholar
  59. 59.
    Ochoa-Reparaz J, Mielcarz DW, Begum-Haque S, Kasper LH (2011) Gut, bugs, and brain: role of commensal bacteria in the control of central nervous system disease. Ann Neurol 69:240–247CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Richard L. Doty
    • 1
    • 2
  • Isabelle A. Tourbier
    • 1
    • 2
  • Dzung L. Pham
    • 3
  • Jennifer L. Cuzzocreo
    • 4
  • Jayaram K. Udupa
    • 5
  • Bilge Karacali
    • 6
  • Evan Beals
    • 1
    • 7
  • Laura Fabius
    • 1
    • 2
  • Fidias E. Leon-Sarmiento
    • 1
    • 2
  • Gul Moonis
    • 8
  • Taehoon Kim
    • 1
    • 2
  • Toru Mihama
    • 1
    • 2
  • Rena J. Geckle
    • 9
  • David M. Yousem
    • 9
  1. 1.Smell and Taste Center, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Otorhinolarynology: Head and Neck Surgery, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Center for Neuroscience and Regenerative MedicineHenry Jackson FoundationBethesdaUSA
  4. 4.Department of NeurologyJohns Hopkins School of MedicineBaltimoreUSA
  5. 5.Medical Imaging Section, Department of RadiologyPerelman School of Medicine, University of PennsylvlaniaPhiladelphiaUSA
  6. 6.Electrical and Electronics Engineering Departmentİzmir Institute of TechnologyUrla, IzmirTurkey
  7. 7.Department of PsychologyMichigan State UniversityEast LansingUSA
  8. 8.Department of RadiologyColumbia University Medical CenterNew YorkUSA
  9. 9.Department of RadiologyThe Johns Hopkins HospitalBaltimoreUSA

Personalised recommendations