Skip to main content
Log in

Theory of mind, empathy and neuropsychological functioning in X-linked Spinal and Bulbar Muscular Atrophy: a controlled study of 20 patients

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Recent studies have described brain involvement, mainly at frontal level, in patients with spinal and bulbar muscular atrophy (SBMA), a rare adult-onset motor neuron disease caused by a CAG repeat in the androgen receptor (AR) gene. The aim of our research was to investigate the poorly characterized neuropsychological and psychological profile of these patients, on the basis of previous literature. We administered a neuropsychological screening and tests relating to cognitive and affective empathy, attributed to the theory of mind (ToM) framework, to 20 males with SBMA, and to age- and education-matched controls. Although patients’ neuropsychological performance was unimpaired, a clear dissociation emerged between their cognitive and affective empathy. Patients had distinctive deficits in mentalizing, as assessed with the Faux Pas Test, whilst affective empathy (i.e., sharing experience), assessed with the Reading the Mind in the Eyes test, appeared to be preserved. The likely implications of subtle frontal lobe impairments on the one hand, and a protective influence of androgen insensitivity in these patients on the other, are discussed in the light of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Kennedy WR, Alter M, Sung JH (1968) Progressive proximal spinal and bulbar muscular atrophy of late onset. A sex-linked recessive trait. Neurology 18(7):671–680

    Article  CAS  PubMed  Google Scholar 

  2. Beitel LK, Alvarado C, Mokhtar S, Paliouras M, Trifiro M (2013) Mechanisms mediating spinal and bulbar muscular atrophy: investigations into polyglutamine-expanded androgen receptor function and dysfunction. Front Neurol 4:53

    Article  PubMed Central  PubMed  Google Scholar 

  3. La Spada AR, Wilson EM, Lubahn DB, Harding A, Fischbeck KH (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352(6330):77–79

    Article  PubMed  Google Scholar 

  4. Parodi S, Pennuto M (2011) Neurotoxic effects of androgens in spinal and bulbar muscular atrophy. Front Neuroendocrinol 32(4):416–425. doi:10.1016/j.yfrne.2011.06.003

    Article  CAS  PubMed  Google Scholar 

  5. Schmidt BJ, Greenberg CR, Allingham-Hawkins DJ, Spriggs EL (2002) Expression of X-linked bulbospinal muscular atrophy (Kennedy disease) in two homozygous women. Neurology 59(5):770–772

    Article  PubMed  Google Scholar 

  6. Torralva T, Kipps CM, Hodges JR, Clark L, Bekinschtein T, Roca M, Calcagno ML, Manes F (2007) The relationship between affective decision-making and theory of mind in the frontal variant of fronto-temporal dementia. Neuropsychologia 45(2):342–349

    Article  PubMed  Google Scholar 

  7. Zajac J, Maclean HE (1998) Kennedy’s disease: clinical aspects. Genetic instabilities and hereditary neurological diseases. Academic Press, New York, pp 87–100

    Google Scholar 

  8. Weber M, Eisen A (1999) Assessment of upper and lower motor neurons in Kennedy’s disease: implications for corticomotoneuronal PSTH studies. Muscle Nerve 22(3):299–306. doi:10.1002/(SICI)1097-4598(199903)22:3<299:AID-MUS2>3.0.CO;2-D

    Article  CAS  PubMed  Google Scholar 

  9. Grunseich C, Rinaldi C, Fischbeck K (2014) Spinal and bulbar muscular atrophy: pathogenesis and clinical management. Oral Dis 20(1):6–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Finsterer J (2009) Bulbar and spinal muscular atrophy (Kennedy’s disease): a review. Eur J Neurol 16(5):556–561

    Article  CAS  PubMed  Google Scholar 

  11. Greenland K, Zajac J (2004) Kennedy’s disease: pathogenesis and clinical approaches. Intern Med J 34(5):279–286

    Article  CAS  PubMed  Google Scholar 

  12. Adachi H, Katsuno M, Minamiyama M, Waza M, Sang C, Nakagomi Y, Kobayashi Y, Tanaka F, Doyu M, Inukai A (2005) Widespread nuclear and cytoplasmic accumulation of mutant androgen receptor in SBMA patients. Brain 128(3):659–670

    Article  PubMed  Google Scholar 

  13. Karitzky J, Block W, Mellies JK, Träber F, Sperfeld A, Schild HH, Haller P, Ludolph AC (1999) Proton magnetic resonance spectroscopy in Kennedy syndrome. Arch Neurol 56(12):1465–1471

    Article  CAS  PubMed  Google Scholar 

  14. Mader I, Karitzky J, Klose U, Seeger U, Sperfeld A, Naegele T, Schick F, Ludolph A, Grodd W (2002) Proton MRS in Kennedy disease: absolute metabolite and macromolecular concentrations. J Magn Reson Imaging 16(2):160–167

    Article  PubMed  Google Scholar 

  15. Pachatz C, Terracciano C, Desiato M, Orlacchio A, Mori F, Rocchi C, Bernardi G, Massa R (2007) Upper motor neuron involvement in X-linked recessive bulbospinal muscular atrophy. Clin Neurophysiol 118(2):262–268

    Article  CAS  PubMed  Google Scholar 

  16. Lai T-H, Soong B-W, Chen J-T, Chen Y-Y, Lai K-L, Wu Z-A, Liao K-K (2007) Multimodal evoked potentials of Kennedy’s disease. Can J Neurol Sci 34(3):328–332

    Article  PubMed  Google Scholar 

  17. Kassubek J, Juengling FD, Sperfeld A-D (2007) Widespread white matter changes in Kennedy disease: a voxel based morphometry study. J Neurol Neurosurg Psychiatry 78(11):1209–1212

    Article  PubMed Central  PubMed  Google Scholar 

  18. Unrath A, Müller HP, Riecker A, Ludolph AC, Sperfeld AD, Kassubek J (2010) Whole brain-based analysis of regional white matter tract alterations in rare motor neuron diseases by diffusion tensor imaging. Hum Brain Mapp 31(11):1727–1740

    PubMed  Google Scholar 

  19. Pieper C, Konrad C, Sommer J, Teismann I, Schiffbauer H (2013) Structural changes of central white matter tracts in Kennedy’s disease–a diffusion tensor imaging and voxel-based morphometry study. Acta Neurol Scand 127(5):323–328

    Article  CAS  PubMed  Google Scholar 

  20. Lai T-H, Liu R-S, Yang B-H, Wang P-S, Lin K-P, Lee Y-C, Soong B-W (2013) Cerebral involvement in spinal and bulbar muscular atrophy (Kennedy’s disease): a pilot study of PET. J Neurol Sci 335(1):139–144

    Article  PubMed  Google Scholar 

  21. Sperfeld AD, Karitzky J, Brummer D, Schreiber H, Häussler J, Ludolph AC, Hanemann CO (2002) X-linked bulbospinal neuronopathy: Kennedy disease. Arch Neurol 59(12):1921–1926

    Article  PubMed  Google Scholar 

  22. Kessler H, Prudlo J, Kraft S, Supprian T (2005) Dementia of frontal lobe type in Kennedy’s disease. Amyotroph Lateral Scler 6(4):250–253

    Article  CAS  Google Scholar 

  23. Mirowska-Guzel D, Seniow J, Sułek A, Leśniak M, Członkowska A (2009) Are cognitive and behavioural deficits a part of the clinical picture in Kennedy’s disease? A case study. Neurocase 15(4):332–337

    Article  PubMed  Google Scholar 

  24. Shaw P, Thagesen H, Tomkins J, Slade J, Usher P, Jackson A, Curtis A, Bushby K, Ince P (1998) Kennedy’s disease: unusual molecular pathologic and clinical features. Neurology 51(1):252–255

    Article  CAS  PubMed  Google Scholar 

  25. Guidetti D, Vescovini E, Motti L, Ghidoni E, Gemignani F, Marbini A, Patrosso M, Ferlini A, Solime F (1996) X-linked bulbar and spinal muscular atrophy, or Kennedy disease: clinical, neurophysiological, neuropathological, neuropsychological and molecular study of a large family. J Neurol Sci 135(2):140–148

    Article  CAS  PubMed  Google Scholar 

  26. Soukup GR, Sperfeld A-D, Uttner I, Karitzky J, Ludolph AC, Kassubek J, Schreiber H (2009) Frontotemporal cognitive function in X-linked spinal and bulbar muscular atrophy (SBMA): a controlled neuropsychological study of 20 patients. J Neurol 256(11):1869–1875

    Article  PubMed  Google Scholar 

  27. Phukan J, Pender NP, Hardiman O (2007) Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol 6(11):994–1003. doi:10.1016/s1474-4422(07)70265-x

    Article  CAS  PubMed  Google Scholar 

  28. Premack D, Woodruff G (1978) Does the chimpanzee have a theory of mind? Behav Brain Sci 1(04):515–526

    Article  Google Scholar 

  29. Torralva T, Roca M, Gleichgerrcht E, Bekinschtein T, Manes F (2009) A neuropsychological battery to detect specific executive and social cognitive impairments in early frontotemporal dementia. Brain 132(5):1299–1309

    Article  PubMed  Google Scholar 

  30. Adenzato M, Cavallo M, Enrici I (2010) Theory of mind ability in the behavioural variant of frontotemporal dementia: an analysis of the neural, cognitive, and social levels. Neuropsychologia 48(1):2–12

    Article  PubMed  Google Scholar 

  31. Gregory C, Lough S, Stone V, Erzinclioglu S, Martin L, Baron-Cohen S, Hodges JR (2002) Theory of mind in patients with frontal variant frontotemporal dementia and Alzheimer’s disease: theoretical and practical implications. Brain 125(Pt 4):752–764

    Article  PubMed  Google Scholar 

  32. Muller F, Simion A, Reviriego E, Galera C, Mazaux J-M, Barat M, Joseph P-A (2010) Exploring theory of mind after severe traumatic brain injury. Cortex 46(9):1088–1099

    Article  PubMed  Google Scholar 

  33. McDonald S, Gowland A, Randall R, Fisher A, Osborne-Crowley K, Honan C (2014) Cognitive factors underpinning poor expressive communication skills after traumatic brain injury: Theory of mind or executive function? Neuropsychology. doi:10.1037/neu0000089

    Google Scholar 

  34. Cavallo M, Adenzato M, Macpherson SE, Karwig G, Enrici I, Abrahams S (2011) Evidence of social understanding impairment in patients with amyotrophic lateral sclerosis. PLoS One 6(10):e25948. doi:10.1371/journal.pone.0025948

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Girardi A, Macpherson SE, Abrahams S (2011) Deficits in emotional and social cognition in amyotrophic lateral sclerosis. Neuropsychology 25(1):53–65. doi:10.1037/a0020357

    Article  PubMed  Google Scholar 

  36. Meier SL, Charleston AJ, Tippett LJ (2010) Cognitive and behavioural deficits associated with the orbitomedial prefrontal cortex in amyotrophic lateral sclerosis. Brain 133(11):3444–3457. doi:10.1093/brain/awq254

    Article  PubMed  Google Scholar 

  37. Decety J (2011) The neuroevolution of empathy. Ann N Y Acad Sci 1231(1):35–45

    Article  PubMed  Google Scholar 

  38. Zaki J, Ochsner KN (2012) The neuroscience of empathy: progress, pitfalls and promise. Nat Neurosci 15(5):675–680

    Article  CAS  PubMed  Google Scholar 

  39. Baron-Cohen S, Richler J, Bisarya D, Gurunathan N, Wheelwright S (2003) The systemizing quotient: an investigation of adults with Asperger syndrome or high–functioning autism, and normal sex differences. Phil Trans R Soc B 358(1430):361–374

    Article  PubMed Central  PubMed  Google Scholar 

  40. Vreeke G, Van der Mark I (2003) Empathy, an integrative model. New Ideas Psychol 21(3):177–207

    Article  Google Scholar 

  41. van Honk J, Schutter DJ, Bos PA, Kruijt AW, Lentjes EG, Baron-Cohen S (2011) Testosterone administration impairs cognitive empathy in women depending on second-to-fourth digit ratio. Proc Natl Acad Sci USA 108(8):3448–3452. doi:10.1073/pnas.1011891108

    Article  PubMed Central  PubMed  Google Scholar 

  42. Kret ME, De Dreu CK (2013) Oxytocin-motivated ally selection is moderated by fetal testosterone exposure and empathic concern. Front Neurosci 7:1. doi:10.3389/fnins.2013.00001

    Article  PubMed Central  PubMed  Google Scholar 

  43. Chapman E, Baron-Cohen S, Auyeung B, Knickmeyer R, Taylor K, Hackett G (2006) Fetal testosterone and empathy: evidence from the empathy quotient (EQ) and the “reading the mind in the eyes” test. Soc Neurosci 1(2):135–148

    Article  PubMed  Google Scholar 

  44. Kaufmann P, Levy G, Thompson J, Delbene M, Battista V, Gordon P, Rowland L, Levin B, Mitsumoto H (2005) The ALSFRSr predicts survival time in an ALS clinic population. Neurology 64(1):38–43

    Article  CAS  PubMed  Google Scholar 

  45. Spinnler H, Tognoni G (1987) Standardizzazione e Taratura Italiana di Test Neuropsicologici, ltal. J Neurol Sci 8(Suppl al no 6):1–120

    Google Scholar 

  46. Novelli G, Papagno C, Capitani E, Laiacona M (1986) Tre test clinici di memoria verbale a lungo termine: taratura su soggetti normali. Arch Psicol Neurol Psichiatr 47:278–296

    Google Scholar 

  47. Benton AL (1968) Differential behavioral effects in frontal lobe disease. Neuropsychologia 6(1):53–60

    Article  Google Scholar 

  48. Reitan RM (1958) Validity of the Trail Making Test as an indicator of organic brain damage. Percept Mot Skills 8(3):271–276

    Article  Google Scholar 

  49. Stone VE, Baron-Cohen S, Knight RT (1998) Frontal lobe contributions to theory of mind. J Cogn Neurosci 10(5):640–656

    Article  CAS  PubMed  Google Scholar 

  50. Baron-Cohen S, Ring HA, Wheelwright S, Bullmore ET, Brammer MJ, Simmons A, Williams SC (1999) Social intelligence in the normal and autistic brain: an fMRI study. Eur J Neurosci 11(6):1891–1898

    Article  CAS  PubMed  Google Scholar 

  51. Baron-Cohen S, Wheelwright S, Hill J, Raste Y, Plumb I (2001) The “Reading the Mind in the Eyes” test revised version: A study with normal adults, and adults with Asperger syndrome or high-functioning autism. J Child Psychol Psychiatry 42(2):241–251

    Article  CAS  PubMed  Google Scholar 

  52. Kitchen CM (2009) Nonparametric vs parametric tests of location in biomedical research. Am J Ophthalmol 147(4):571–572. doi:10.1016/j.ajo.2008.06.031

    Article  PubMed Central  PubMed  Google Scholar 

  53. Siegel S, Castellan NJ Jr (1988) Nonparametric statistics for the behavioral sciences, 2nd edn. McGraw-Hill, London

    Google Scholar 

  54. Rothman KJ (1990) No adjustments are needed for multiple comparisons. Epidemiology 1(1):43–46

    Article  CAS  PubMed  Google Scholar 

  55. Overgaauw S, van Duijvenvoorde AC, Moor BG, Crone EA (2014) A longitudinal analysis of neural regions involved in reading the mind in the eyes. Soc Cogn Affect Neurosci. doi:10.1093/scan/nsu095

    PubMed  Google Scholar 

  56. Adams RB Jr, Rule NO, Franklin RG Jr, Wang E, Stevenson MT, Yoshikawa S, Nomura M, Sato W, Kveraga K, Ambady N (2010) Cross-cultural reading the mind in the eyes: an fMRI investigation. J Cogn Neurosci 22(1):97–108. doi:10.1162/jocn.2009.21187

    Article  PubMed  Google Scholar 

  57. Berthoz S, Armony JL, Blair RJ, Dolan RJ (2002) An fMRI study of intentional and unintentional (embarrassing) violations of social norms. Brain 125(Pt 8):1696–1708

    Article  CAS  PubMed  Google Scholar 

  58. Palmieri A, Mento G, Calvo V, Querin G, D’Ascenzo C, Volpato C, Kleinbub JR, Bisiacchi PS, Soraru G (2014) Female gender doubles executive dysfunction risk in ALS: a case-control study in 165 patients. J Neurol Neurosurg Psychiatry. doi:10.1136/jnnp-2014-307654

    PubMed  Google Scholar 

  59. Kleinbub J, Messina I, Bordin D, Voci A, Calvo V, Sambin M, Palmieri A (2012) Corrigendum to “synchronization of skin conductance levels in therapeutic dyads” [Int. J. Psychophysiol. 85 (3) 383]. Int J Psychophysiol 86(3):299

    Article  Google Scholar 

  60. Messina I, Palmieri A, Sambin M, Kleinbub JR, Voci A, Calvo V (2013) Somatic underpinnings of perceived empathy: The importance of psychotherapy training. Psychother Res 23(2):169–177

    Article  PubMed  Google Scholar 

  61. Marci C, Orr S (2006) The effect of emotional distance on psychophysiological concordance and perceived empathy between patient and interviewer. Appl Psychophysiol Biofeedback 31(2):115–128

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the patients and healthy volunteers who participated in the study. We also thank Carla D’Ascenzo and Cinzia Bertolin for their remarkable contribution to the SBMA diagnosis and data collection.

Conflicts of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest to disclose.

Ethical standard

The study protocol was in accordance with the Helsinki Declaration on human rights and was approved by the Ethics Committee at the School of Psychology, University of Padova. All participants signed an informed consent form prior to their inclusion in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arianna Palmieri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Rosa, E., Sorarù, G., Kleinbub, J.R. et al. Theory of mind, empathy and neuropsychological functioning in X-linked Spinal and Bulbar Muscular Atrophy: a controlled study of 20 patients. J Neurol 262, 394–401 (2015). https://doi.org/10.1007/s00415-014-7567-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-014-7567-5

Keywords

Navigation