Journal of Neurology

, Volume 261, Issue 10, pp 2037–2042 | Cite as

Recent advances in the neuroimmunology of cell-surface CNS autoantibody syndromes, Alzheimer’s disease, traumatic brain injury and schizophrenia

Neurological Update

Abstract

In this update, we review recent advances in antibody-associated disorders of the central nervous system, and the immune mechanisms which may contribute to Alzheimer’s disease, traumatic brain injury and schizophrenia. The field of neuroimmunology is rapidly developing and has concerned itself with an expanding portfolio of diseases. The core neuroimmunological diseases remain, multiple sclerosis, neuromyelitis optica, primary inflammatory and antibody-associated disorders of the central and peripheral nervous system (including Myasthenia Gravis and other disorders of neuromuscular junction and muscle, paraneoplastic syndromes, paraproteinaemic neuropathies), and the neurological involvement seen in systemic inflammatory diseases including lupus, sarcoidosis and vasculitis. But it is increasingly realised that immune mechanisms may contribute to the pathogenesis of degenerative diseases including Alzheimer’s disease, traumatic brain disease and psychiatric diseases including schizophrenia and depression. These common and devastating disorders, often without effective disease-modifying therapies, are yet to be seen in a conventional neuroimmunology clinic, but the immune mechanisms identified have encouraged research into novel therapeutic approaches for them.

Keywords

Neuroimmunology Schizophrenia Psychosis Alzheimer’s disease Traumatic brain injury NMDAR encephalitis 

Notes

Conflicts of interest

The authors declare no conflicts of interest.

Ethical standard

The manuscript meets the ethical standards required for publishing.

References

  1. 1.
    Rieckmann P, Boyko A, Centonze D, Coles A, Elovaara I, Havrdova E, Hommes O, Lelorier J, Morrow SA, Oreja-Guevara C, Rijke N, Schippling S (2013) Future MS care: a consensus statement of the MS in the 21st Century Steering Group. J Neurol 260:462–469PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Lozeron P, Trocello JM, Kubis N (2013) Acquired neuropathies. J Neurol 260:2433–2440CrossRefPubMedGoogle Scholar
  3. 3.
    Trebst C, Jarius S, Berthele A, Paul F, Schippling S, Wildemann B, Borisow N, Kleiter I, Aktas O, Kumpfel T (2014) Update on the diagnosis and treatment of neuromyelitis optica: recommendations of the Neuromyelitis Optica Study Group (NEMOS). J Neurol 261:1–16PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Weber KP, Straumann D (2014) Neuro-ophthalmology update. J Neurol 261:1251–1256CrossRefPubMedGoogle Scholar
  5. 5.
    Foltynie T, Kahan J (2013) Parkinson’s disease: an update on pathogenesis and treatment. J Neurol 260:1433–1440CrossRefPubMedGoogle Scholar
  6. 6.
    Vincent A (2013) Developments in autoimmune channelopathies. Autoimmun Rev 12:678–681CrossRefPubMedGoogle Scholar
  7. 7.
    Titulaer MJ, McCracken L, Gabilondo I, Armangue T, Glaser C, Iizuka T, Honig LS, Benseler SM, Kawachi I, Martinez-Hernandez E, Aguilar E, Gresa-Arribas N, Ryan-Florance N, Torrents A, Saiz A, Rosenfeld MR, Balice-Gordon R, Graus F, Dalmau J (2013) Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 12:157–165PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Zandi MS (2013) Defining and treating leucine-rich glioma inactivated 1 antibody associated autoimmunity. Brain 136:2933–2935CrossRefPubMedGoogle Scholar
  9. 9.
    Irani SR, Stagg CJ, Schott JM, Rosenthal CR, Schneider SA, Pettingill P, Pettingill R, Waters P, Thomas A, Voets NL, Cardoso MJ, Cash DM, Manning EN, Lang B, Smith SJ, Vincent A, Johnson MR (2013) Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype. Brain 136:3151–3162CrossRefPubMedGoogle Scholar
  10. 10.
    Brown JW, Martin PJ, Thorpe JW, Michell AW, Coles AJ, Cox AL, Vincent A, Zandi MS (2014) Long-term remission with rituximab in refractory leucine-rich glioma inactivated 1 antibody encephalitis. J Neuroimmunol 271(1–2):66–68Google Scholar
  11. 11.
    Zandi MS, Irani SR, Lang B, Waters P, Jones PB, McKenna P, Coles AJ, Vincent A, Lennox BR (2011) Disease-relevant autoantibodies in first episode schizophrenia. J Neurol 258:686–688PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Pathmanandavel K, Starling J, Merheb V, Ramanathan S, Sinmaz N, Dale RC, Brilot F (2014) Antibodies to surface dopamine-2 receptor and N-methyl-d-aspartate receptor in the first episode of acute psychosis in children. Biol Psychiatry. doi:10.1016/j.biopsych.2014.07.014
  13. 13.
    Hacohen Y, Dlamini N, Hedderly T, Hughes E, Woods M, Vincent A, Lim M (2014) N-methyl-d-aspartate receptor antibody-associated movement disorder without encephalopathy. Dev Med Child Neurol 56:190–193CrossRefPubMedGoogle Scholar
  14. 14.
    Brenner T, Sills GJ, Hart Y, Howell S, Waters P, Brodie MJ, Vincent A, Lang B (2013) Prevalence of neurologic autoantibodies in cohorts of patients with new and established epilepsy. Epilepsia 54:1028–1035. doi:10.1111/epi.12127 CrossRefPubMedGoogle Scholar
  15. 15.
    Bullmore ET, Lynall ME (2014) Immunologic therapeutics and psychotic disorders. Biol Psychiatry 75:260–261CrossRefPubMedGoogle Scholar
  16. 16.
    Gable MS, Sheriff H, Dalmau J, Tilley DH, Glaser CA (2012) The frequency of autoimmune N-methyl-d-aspartate receptor encephalitis surpasses that of individual viral etiologies in young individuals enrolled in the California Encephalitis Project. Clin Infect Dis 54:899–904PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Granerod J, Cousens S, Davies NW, Crowcroft NS, Thomas SL (2013) New estimates of incidence of encephalitis in England. Emerg Infect Dis 19. doi:10.3201/eid1909.130064
  18. 18.
    Granerod J, Ambrose HE, Davies NW, Clewley JP, Walsh AL, Morgan D, Cunningham R, Zuckerman M, Mutton KJ, Solomon T, Ward KN, Lunn MP, Irani SR, Vincent A, Brown DW, Crowcroft NS (2010) Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. Lancet Infect Dis 10:835–844CrossRefPubMedGoogle Scholar
  19. 19.
    Armangue T, Leypoldt F, Malaga I, Raspall-Chaure M, Marti I, Nichter C, Pugh J, Vicente-Rasoamalala M, Lafuente-Hidalgo M, Macaya A, Ke M, Titulaer MJ, Hoftberger R, Sheriff H, Glaser C, Dalmau J (2014) Herpes simplex virus encephalitis is a trigger of brain autoimmunity. Ann Neurol 75:317–323PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Hacohen Y, Deiva K, Pettingill P, Waters P, Siddiqui A, Chretien P, Menson E, Lin JP, Tardieu M, Vincent A, Lim MJ (2014) N-methyl-d-aspartate receptor antibodies in post-herpes simplex virus encephalitis neurological relapse. Mov Disord 29:90–96CrossRefPubMedGoogle Scholar
  21. 21.
    Pruss H, Finke C, Holtje M, Hofmann J, Klingbeil C, Probst C, Borowski K, Ahnert-Hilger G, Harms L, Schwab JM, Ploner CJ, Komorowski L, Stoecker W, Dalmau J, Wandinger KP (2012) N-methyl-d-aspartate receptor antibodies in herpes simplex encephalitis. Annals of neurology 72:902–911PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Mohammad SS, Sinclair K, Pillai S, Merheb V, Aumann TD, Gill D, Dale RC, Brilot F (2014) Herpes simplex encephalitis relapse with chorea is associated with autoantibodies to N-Methyl-d-aspartate receptor or dopamine-2 receptor. Mov Disord 29:117–122CrossRefPubMedGoogle Scholar
  23. 23.
    De Tiege X, Rozenberg F, Des Portes V, Lobut JB, Lebon P, Ponsot G, Heron B (2003) Herpes simplex encephalitis relapses in children: differentiation of two neurologic entities. Neurology 61:241–243CrossRefPubMedGoogle Scholar
  24. 24.
    Angus-Leppan H, Rudge P, Mead S, Collinge J, Vincent A (2013) Autoantibodies in sporadic creutzfeldt-jakob disease. JAMA Neurol 70:919–922CrossRefPubMedGoogle Scholar
  25. 25.
    Petit-Pedrol M, Armangue T, Peng X, Bataller L, Cellucci T, Davis R, McCracken L, Martinez-Hernandez E, Mason WP, Kruer MC, Ritacco DG, Grisold W, Meaney BF, Alcala C, Sillevis-Smitt P, Titulaer MJ, Balice-Gordon R, Graus F, Dalmau J (2014) Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies. Lancet Neurol 13:276–286CrossRefPubMedGoogle Scholar
  26. 26.
    Carvajal-Gonzalez A, Leite MI, Waters P, Woodhall M, Coutinho E, Balint B, Lang B, Pettingill P, Carr A, Sheerin UM, Press R, Lunn MP, Lim M, Maddison P, Meinck HM, Vandenberghe W, Vincent A (2014) Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain 137:2178–2192PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Hutchinson M, Waters P, McHugh J, Gorman G, O’Riordan S, Connolly S, Hager H, Yu P, Becker CM, Vincent A (2008) Progressive encephalomyelitis, rigidity, and myoclonus: a novel glycine receptor antibody. Neurology 71:1291–1292CrossRefPubMedGoogle Scholar
  28. 28.
    Chang T, Alexopoulos H, McMenamin M, Carvajal-Gonzalez A, Alexander SK, Deacon R, Erdelyi F, Szabo G, Lang B, Blaes F, Brown P, Vincent A (2013) Neuronal surface and glutamic acid decarboxylase autoantibodies in nonparaneoplastic stiff person syndrome. JAMA Neurol 70:1140–1149CrossRefPubMedGoogle Scholar
  29. 29.
    Chang T, Alexopoulos H, Pettingill P, McMenamin M, Deacon R, Erdelyi F, Szabo G, Buckley CJ, Vincent A (2013) Immunization against GAD induces antibody binding to GAD-independent antigens and brainstem GABAergic neuronal loss. PLoS ONE 8:e72921PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Harrison NA, Doeller CF, Voon V, Burgess N, Critchley HD (2014) Peripheral inflammation acutely impairs human spatial memory via actions on medial temporal lobe glucose metabolism. Biol Psychiatry. doi:10.1016/j.biopsych.2014.01.005 Google Scholar
  31. 31.
    Holmes C, Cunningham C, Zotova E, Woolford J, Dean C, Kerr S, Culliford D, Perry VH (2009) Systemic inflammation and disease progression in Alzheimer disease. Neurology 73:768–774PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Gomez-Nicola D, Fransen NL, Suzzi S, Perry VH (2013) Regulation of microglial proliferation during chronic neurodegeneration. J Neurosci 33:2481–2493CrossRefPubMedGoogle Scholar
  33. 33.
    Perry VH, Teeling J (2013) Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol 35:601–612PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Eikelenboom P, Stam FC (1982) Immunoglobulins and complement factors in senile plaques. An immunoperoxidase study. Acta Neuropathol 57:239–242CrossRefPubMedGoogle Scholar
  35. 35.
    Rozemuller JM, Eikelenboom P, Stam FC (1986) Role of microglia in plaque formation in senile dementia of the Alzheimer type. An immunohistochemical study. Virchows Arch B Cell Pathol Incl Mol Pathol 51:247–254CrossRefPubMedGoogle Scholar
  36. 36.
    Sierra A, Abiega O, Shahraz A, Neumann H (2013) Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 7:6PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JS, Younkin S, Hazrati L, Collinge J, Pocock J, Lashley T, Williams J, Lambert JC, Amouyel P, Goate A, Rademakers R, Morgan K, Powell J, St George-Hyslop P, Singleton A, Hardy J (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, Rujescu D, Hampel H, Giegling I, Andreassen OA, Engedal K, Ulstein I, Djurovic S, Ibrahim-Verbaas C, Hofman A, Ikram MA, van Duijn CM, Thorsteinsdottir U, Kong A, Stefansson K (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–116PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Kleinberger G, Yamanishi Y, Suarez-Calvet M, Czirr E, Lohmann E, Cuyvers E, Struyfs H, Pettkus N, Wenninger-Weinzierl A, Mazaheri F, Tahirovic S, Lleo A, Alcolea D, Fortea J, Willem M, Lammich S, Molinuevo JL, Sanchez-Valle R, Antonell A, Ramirez A, Heneka MT, Sleegers K, van der Zee J, Martin JJ, Engelborghs S, Demirtas-Tatlidede A, Zetterberg H, Van Broeckhoven C, Gurvit H, Wyss-Coray T, Hardy J, Colonna M, Haass C (2014) TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci Transl Med 6:243ra286CrossRefGoogle Scholar
  40. 40.
    Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA, Zhang C, Xie T, Tran L, Dobrin R, Fluder E, Clurman B, Melquist S, Narayanan M, Suver C, Shah H, Mahajan M, Gillis T, Mysore J, MacDonald ME, Lamb JR, Bennett DA, Molony C, Stone DJ, Gudnason V, Myers AJ, Schadt EE, Neumann H, Zhu J, Emilsson V (2013) Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 153:707–720PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Dodel R, Rominger A, Bartenstein P, Barkhof F, Blennow K, Forster S, Winter Y, Bach JP, Popp J, Alferink J, Wiltfang J, Buerger K, Otto M, Antuono P, Jacoby M, Richter R, Stevens J, Melamed I, Goldstein J, Haag S, Wietek S, Farlow M, Jessen F (2013) Intravenous immunoglobulin for treatment of mild-to-moderate Alzheimer’s disease: a phase 2, randomised, double-blind, placebo-controlled, dose-finding trial. Lancet Neurol 12:233–243CrossRefPubMedGoogle Scholar
  42. 42.
    Basler M, Kirk CJ, Groettrup M (2013) The immunoproteasome in antigen processing and other immunological functions. Curr Opin Immunol 25:74–80CrossRefPubMedGoogle Scholar
  43. 43.
    Orre M, Kamphuis W, Dooves S, Kooijman L, Chan ET, Kirk CJ, Dimayuga Smith V, Koot S, Mamber C, Jansen AH, Ovaa H, Hol EM (2013) Reactive glia show increased immunoproteasome activity in Alzheimer’s disease. Brain 136:1415–1431CrossRefPubMedGoogle Scholar
  44. 44.
    Algattas H, Huang JH (2014) Traumatic Brain Injury pathophysiology and treatments: early, intermediate, and late phases post-injury. Int J Mol Sci 15:309–341PubMedCentralCrossRefGoogle Scholar
  45. 45.
    Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W (2013) Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain 136:28–42PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE, Kinnunen KM, Gentleman S, Heckemann RA, Gunanayagam K, Gelosa G, Sharp DJ (2011) Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol 70:374–383CrossRefPubMedGoogle Scholar
  47. 47.
    Liu HD, Li W, Chen ZR, Hu YC, Zhang DD, Shen W, Zhou ML, Zhu L, Hang CH (2013) Expression of the NLRP3 inflammasome in cerebral cortex after traumatic brain injury in a rat model. Neurochem Res 38:2072–2083CrossRefPubMedGoogle Scholar
  48. 48.
    Clausen F, Hanell A, Israelsson C, Hedin J, Ebendal T, Mir AK, Gram H, Marklund N (2011) Neutralization of interleukin-1beta reduces cerebral edema and tissue loss and improves late cognitive outcome following traumatic brain injury in mice. Eur J Neurosci 34:110–123CrossRefPubMedGoogle Scholar
  49. 49.
    Helmy A, Guilfoyle MR, Carpenter KL, Pickard JD, Menon DK, Hutchinson PJ (2014) Recombinant human interleukin-1 receptor antagonist in severe traumatic brain injury: a phase II randomized control trial. J Cereb Blood Flow Metab 34:845–851PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Huang BR, Chang PC, Yeh WL, Lee CH, Tsai CF, Lin C, Lin HY, Liu YS, Wu CY, Ko PY, Huang SS, Hsu HC, Lu DY (2014) Anti-neuroinflammatory effects of the calcium channel blocker nicardipine on microglial cells: implications for neuroprotection. PLoS One 9:e91167PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Kabadi SV, Stoica BA, Loane DJ, Luo T, Faden AI (2014) CR8, a novel inhibitor of CDK, limits microglial activation, astrocytosis, neuronal loss, and neurologic dysfunction after experimental traumatic brain injury. J Cereb Blood Flow Metab 34:502–513PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Corser-Jensen CE, Goodell DJ, Freund RK, Serbedzija P, Murphy RC, Farias SE, Dell’Acqua ML, Frey LC, Serkova N, Heidenreich KA (2014) Blocking leukotriene synthesis attenuates the pathophysiology of traumatic brain injury and associated cognitive deficits. Exp Neurol 256:7–16CrossRefPubMedGoogle Scholar
  53. 53.
    Roth TL, Nayak D, Atanasijevic T, Koretsky AP, Latour LL, McGavern DB (2014) Transcranial amelioration of inflammation and cell death after brain injury. Nature 505:223–228PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Deakin J, Lennox BR, Zandi MS (2014) Antibodies to the N-methyl-d-aspartate receptor and other synaptic proteins in psychosis. Biol Psychiatry 75:284–291CrossRefPubMedGoogle Scholar
  55. 55.
    Coutinho E, Harrison P, Vincent A (2014) Do neuronal autoantibodies cause psychosis? A neuroimmunological perspective. Biol Psychiatry 75:269–275CrossRefPubMedGoogle Scholar
  56. 56.
    Carter CS, Bullmore ET, Harrison P (2014) Is there a flame in the brain in psychosis? Biol Psychiatry 75:258–259CrossRefPubMedGoogle Scholar
  57. 57.
    Benros ME, Eaton WW, Mortensen PB (2014) The epidemiologic evidence linking autoimmune diseases and psychosis. Biol Psychiatry 75:300–306CrossRefPubMedGoogle Scholar
  58. 58.
    Khandaker GM, Zimbron J, Lewis G, Jones PB (2013) Prenatal maternal infection, neurodevelopment and adult schizophrenia: a systematic review of population-based studies. Psychol Med 43:239–257PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Girgis RR, Kumar SS, Brown AS (2014) The cytokine model of schizophrenia: emerging therapeutic strategies. Biol Psychiatry 75:292–299PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, Luurtsema G, Windhorst AD, Cahn W, Lammertsma AA, Kahn RS (2008) Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry 64:820–822CrossRefPubMedGoogle Scholar
  61. 61.
    Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–427PubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Clinical NeurosciencesAddenbrooke’s Hospital, University of CambridgeCambridgeUK
  2. 2.NIHR Cambridge Biomedical Research CentreCambridgeUK

Personalised recommendations