Journal of Neurology

, Volume 261, Issue 9, pp 1803–1809 | Cite as

Arylsulphatase A activity in familial parkinsonism: a pathogenetic role?

  • Elena Antelmi
  • Giovanni Rizzo
  • Margherita Fabbri
  • Sabina Capellari
  • Cesa Scaglione
  • Paolo MartinelliEmail author
Original Communication


Cellular mechanism leading to Parkinson Disease (PD) is still unknown, but impairment of lysosomal degradation of aberrant proteins seems to play a crucial role. The most known lysosomal disease associated with PD is Gaucher Disease. However, actually a number of different lysosomal disorders have been linked with PD. We report three families with Arylsulphatase A partial deficit in which we can find a high recurrence of parkinsonism among the siblings. The pedigree members show as well some atypical signs and symptoms among the PD spectrum features. Arylsulphatase A plays a crucial role in protein degradation. Even if a possibly casual association cannot be excluded, it can be speculated that Arylsulphatase A partial deficit can act as a cofactor for neurodegeneration in subjects with other genetic or environmental predispositions to PD or to other neurodegenerative disease.


Parkinsonism Arylsulphatase A Pathogenetic role 


Conflicts of interest

Authors have nothing to disclosure. Statement: as corresponding author, I can personally guarantee that I asked all the patients for their consent and they all agreed to be video-recorded.

Ethical standard

The study has been approved by the Institution Review Board.

Supplementary material

415_2014_7425_MOESM1_ESM.wmv (11.2 mb)
Supplementary material 1 (WMV 11419 kb)


  1. 1.
    Goedert M, Spillantini MG, Del Tredici K, Braak H (2013) 100 years of lewy pathology. Nat Rev Neurol 9:13–24CrossRefPubMedGoogle Scholar
  2. 2.
    Trinh J, Farrer M (2013) Advances in the genetics of Parkinson disease. Nat Rev Neurol 9:445–454CrossRefPubMedGoogle Scholar
  3. 3.
    Aharon-Peretz J, Rosenbaum H, Gershoni-Baruch R (2004) Mutations in the glucocerebrosidase gene and Parkinson’s disease in Ashkenazi Jews. N Engl J Med 351:1972–1977CrossRefPubMedGoogle Scholar
  4. 4.
    Gan-Or Z, Giladi N, Rozovski U et al (2008) Genotype-phenotype correlations between GBA mutations and Parkinson disease risk and onset. Neurology 70:2277–2283CrossRefPubMedGoogle Scholar
  5. 5.
    Shachar T, Lo Bianco C, Recchia A (2011) Lysosomal storage disorder and Parkinson’s Disease: Gaucher Disease and beyond. Mov Disord 26:1593–1604CrossRefPubMedGoogle Scholar
  6. 6.
    Dehay B, Martinez-Vicente M, Caldwell GA et al (2013) Lysosomal impairment in Parkinson’s disease. Mov Disord 28:725–732CrossRefPubMedGoogle Scholar
  7. 7.
    Sharma N (2013) Lysosomal enzyme defects and Parkinson disease. Neurology 80:1544–1545CrossRefPubMedGoogle Scholar
  8. 8.
    Sangiorgi S, Ferini A, Zanetti A, Mochi M (1991) Reduced activity arylsulphatase A and predisposition to neurological disorders: analysis of 140 pediatric patients. Am J Med Genetic 40:365–369CrossRefGoogle Scholar
  9. 9.
    Martinelli P, Ippoliti M, Montanari M et al (1994) Arylsulphatase A (ASA) activity in parkinsonism and symptomatic essential tremor. Acta Neurol Scand 89:171–174CrossRefPubMedGoogle Scholar
  10. 10.
    Gallassi R, Lenzi P, Stracciari A et al (1986) Neuropsychological assessment of mental deterioration: purpose of a brief battery and a probabilistic definition of “normality” and “non-normality”. Acta Psychiatr Scand 74:62–67CrossRefPubMedGoogle Scholar
  11. 11.
    Lowry O, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin-phenol reagent. J Biol Chem 93:265–275Google Scholar
  12. 12.
    Baum H, Dodgson KS, Spencer B (1959) The assay of arylsulphatase A and B in human urine. Clin Chim Acta 4:453–455CrossRefPubMedGoogle Scholar
  13. 13.
    Sidransky E, Nalls MA, Aasly JO et al (2009) Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 361:1651–1661PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Tayebi N, Callahan M, Madike V et al (2001) Gaucher disease and parkinsonism: a phenotypic and genotypic characterization. Mol Genet Metab 73:313–321CrossRefPubMedGoogle Scholar
  15. 15.
    Tayebi N, Walker J, Stubblefield B et al (2003) Gaucher disease with parkinsonian manifestations: does glucocerebrosidase deficiency contribute to a vulnerability to parkinsonism? Mol Genet Metab 79:104–109CrossRefPubMedGoogle Scholar
  16. 16.
    Goker-Alpan O, Lopez G, Vithayathil J et al (2008) The spectrum of parkinsonian manifestations associated with glucocerebrosidase mutations. Arch Neurol 65:1353–1357PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Neumann J, Bras J, Deas E et al (2009) Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain 132:1783–1794PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Setó-Salvia N, Pagonabarraga J, Houlden H et al (2011) Glucocerebrosidase mutations confer a greater risk of dementia during Parkinson’s disease course. Mov Disord 27:393–399CrossRefPubMedGoogle Scholar
  19. 19.
    Ziegler SG, Eblan MJ, Gutti U et al (2007) Glucocerebrosidase mutations in Chinese subjects from Taiwan with sporadic Parkinson disease. Mol Genet Metab 91:195–200PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Marras C, Schuele B, Munhoz RP et al (2011) Phenotype in parkinsonian and nonparkinsonian LRRK2 G2019S mutation carriers. Neurology 77:325–333PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Gegg ME, Burke D, Heales SJ et al (2012) Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains. Ann Neurol 72:455–463PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Hara T, Nakamura K, Matsui M et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889CrossRefPubMedGoogle Scholar
  23. 23.
    Komatsu M, Waguri S, Chiba T et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884CrossRefPubMedGoogle Scholar
  24. 24.
    Zhu JH, Guo F, Shelburne J, Watkins S, Chu CT (2003) Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewy body diseases. Brain Pathol 13:473–481PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Alvarez-Erviti L, Rodriguez-Oroz MC, Cooper JM et al (2010) Chaperone- mediated autophagy markers in Parkinson disease brains. Arch Neurol 67:1464–1472CrossRefPubMedGoogle Scholar
  26. 26.
    Vila M, Bove J, Dehay B et al (2011) Lysosomal membrane permeabilization in Parkinson disease. Autophagy 7:98–100CrossRefPubMedGoogle Scholar
  27. 27.
    Sanchez-Danes A, Richaud-Patin Y, Carballo-Carbajal I et al (2012) Disease-specific phenotypes in dopamine neurons from human iPS based models of genetic and sporadic Parkinson’s disease. EMBO Mol Med 4:380–395PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Xilouri M, Brekk OR, Stefanis L (2013) Alpha-synuclein and protein degradation systems: a reciprocal relationship. Mol Neurobiol 47:537–551CrossRefPubMedGoogle Scholar
  29. 29.
    Neudorfer O, Giladi N, Elstein D et al (1996) Occurrence of Parkinson’s syndrome in type I Gaucher disease. QJM 89:691–694CrossRefPubMedGoogle Scholar
  30. 30.
    Varkonyi J, Rosenbaum H, Baumann N et al (2003) Gaucher disease associated with parkinsonism: four further case reports. Am J Med Genet 116:348–351CrossRefGoogle Scholar
  31. 31.
    Bembi B, Zambito Marsala S, Sidransky E et al (2003) Gaucher’s disease with Parkinson’s disease: clinical and pathological aspects. Neurology 61:99–101CrossRefPubMedGoogle Scholar
  32. 32.
    Halperin A, Elstein D, Zimran A (2003) Increased incidence of Parkinson disease among relatives of patients with Gaucher disease. Blood Cells Mol Dis 36:426–428CrossRefGoogle Scholar
  33. 33.
    Nichols WC, Pankratz N, Marek DK, For the Parkinson Study Group-PROGENI Investigators (2009) Mutations in GBA are associated with familial Parkinson disease susceptibility and age at onset. Neurology 72:310–316PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Mitsui J, Mizuta I, Toyoda et al (2009) Mutations for Gaucher disease confer high susceptibility to Parkinson disease. Arch Neurol 66:571–576CrossRefPubMedGoogle Scholar
  35. 35.
    Duran R, Mencacci NE, Angeli AV et al (2013) The glucocerobrosidase E326K variant predisposes to Parkinson’s disease, but does not cause Gaucher’s disease. Mov Disord 28:232–236PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Winder-Rhodes SE, Evans JR, Ban M et al (2013) Glucocerebrosidase mutations influence the natural history of Parkinson’ s disease in a community-based incident cohort. Brain 136:392–399CrossRefPubMedGoogle Scholar
  37. 37.
    Dermentzaki G, Dimitriou E, Xilouri M et al (2013) Loss of β-glucocerebrosidase activity does not affect alpha-synuclein levels or lysosomal function in neuronal cells. PLoS One 8(4):60674. doi: 10.1371/journal.pone.0060674
  38. 38.
    Kappler J, Watts RWE, Conzelmann E et al (1991) Low arysulphatase A activity and choreoathetotic syndrome in three siblings: differentiation of pseudodeficiency from metachromatic leukodystrophy. Eur J Pediatric 150:287–290CrossRefGoogle Scholar
  39. 39.
    Suzuki K, Iseki E, Togo T et al (2007) Neuronal and glial accumulation of alpha and beta synucleins in human lipidoses. Acta Neuropathol 114:481–489CrossRefPubMedGoogle Scholar
  40. 40.
    Parnetti L, Chiasserini D, Persichetti E et al (2014) Cerebrospinal fluid lysosomal enzymes and α-synuclein in Parkinson’s disease. Mov Disord. doi: 10.1002/mds.25772 Google Scholar
  41. 41.
    Murphy KE, Gysbers AM, Abbott SK et al (2014) Reduced glucocerebrosidase is associated with increased α-synuclein in sporadic Parkinson’s disease. Brain 137:834–848PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Nuytemans L, Bademci G, Inchausti G (2013) Whole exome sequencing of rare variants in EIF4G1 and VPS35 in Parkinson disease. Neurology 80:982–989Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Elena Antelmi
    • 1
  • Giovanni Rizzo
    • 1
  • Margherita Fabbri
    • 1
  • Sabina Capellari
    • 1
    • 2
  • Cesa Scaglione
    • 1
    • 2
  • Paolo Martinelli
    • 1
    Email author
  1. 1.Department of Biomedical and Neuromotor Sciences, (DIBINEM)University of BolognaBolognaItaly
  2. 2.IRCCS, Institute of Neurological SciencesBolognaItaly

Personalised recommendations