Journal of Neurology

, Volume 261, Issue 9, pp 1752–1762 | Cite as

Objective assessment of motor fatigue in multiple sclerosis: the Fatigue index Kliniken Schmieder (FKS)

  • Aida SehleEmail author
  • Manfred Vieten
  • Simon Sailer
  • Annegret Mündermann
  • Christian Dettmers
Original Communication


Fatigue is a common and frequently disabling symptom of multiple sclerosis (MS). The aim of this study was to develop the Fatigue index Kliniken Schmieder (FKS) for detecting motor fatigue in patients with MS using kinematic gait analysis. The FKS relies on the chaos theoretical term “attractor”, which, if unchanged, is a necessary and sufficient indicator of a stable dynamical system. We measured the acceleration of the feet at the beginning of and shortly before stopping a treadmill walking task in 20 healthy subjects and 40 patients with multiple sclerosis. The attractor and movement variability were calculated. In the absence of muscular exhaustion a significant difference in the attractor and movement variability between the two time points demonstrates altered motor control indicating fatigue. Subjects were classified using the FKS. All healthy subjects had normal FKS and thus no fatigue. 29 patients with MS were classified into a fatigue group and 11 patients into a non-fatigue group. This classification agreed with the physician’s observation and video analyses in up to 97 % of cases. The FKS did not correlate significantly with the overall and motor dimensions of the fatigue questionnaire scores in patients with MS and motor fatigue. The common concept of fatigue as overall subjective sensation of exhaustion can be affected by conditions including depression, sleep disorder and others. FKS constitutes a robust and objective measure of changes in motor performance. Therefore, the FKS allows correct identification of motor fatigue even in cases where common comorbidities mask motor fatigue.


Fatigue Gait analysis Fatigue index Physical performance Lactate level Heart rate 



The study was supported by the Lurija Institute, Kliniken Schmieder, Germany.

Conflicts of interest

The authors declare no conflicts of interest with respect to the authorship and/or publication of this article.

Ethical standard

The study was approved by the local ethics committee and conducted in accordance with the Declaration of Helsinki. All participants provided written informed consent prior to their participation.


  1. 1.
    Thickbroom GW, Sacco P, Faulkner DL, Kermode AG, Mastaglia FL (2008) Enhanced corticomotor excitability with dynamic fatiguing exercise of the lower limb in multiple sclerosis. J Neurol 255:1001–1005CrossRefPubMedGoogle Scholar
  2. 2.
    Romani A, Bergamaschi R, Candeloro E, Alfonsi E, Callieco R, Cosi V (2004) Fatigue in multiple sclerosis: multidimensional assessment and response to symptomatic treatment. Mult Scler 10:462–468CrossRefPubMedGoogle Scholar
  3. 3.
    Kluger BM, Krupp LB, Enoka RM (2013) Fatigue and fatigability in neurologic illnesses: proposal for a unified taxonomy. Neurology 80:409–416PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Liepert J, Mingers D, Heesen C, Baumer T, Weiller C (2005) Motor cortex excitability and fatigue in multiple sclerosis: a transcranial magnetic stimulation study. Mult Scler 11:316–321CrossRefPubMedGoogle Scholar
  5. 5.
    Bigland-Ritchie B, Rice CL, Garland SJ, Walsh ML (1995) Task-dependent factors in fatigue of human voluntary contractions. Adv Exp Med Biol 384:361–380CrossRefPubMedGoogle Scholar
  6. 6.
    Petajan JH, White AT (2000) Motor-evoked potentials in response to fatiguing grip exercise in multiple sclerosis patients. Clin Neurophysiol 111:2188–2195CrossRefPubMedGoogle Scholar
  7. 7.
    McDonald WI, Compston A, Edan G et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50:121–127CrossRefPubMedGoogle Scholar
  8. 8.
    Roelcke U, Kappos L, Lechner-Scott J et al (1997) Reduced glucose metabolism in the frontal cortex and basal ganglia of multiple sclerosis patients with fatigue: a 18F-fluorodeoxyglucose positron emission tomography study. Neurology 48:1566–1571CrossRefPubMedGoogle Scholar
  9. 9.
    Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD (1989) The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol 46:1121–1123CrossRefPubMedGoogle Scholar
  10. 10.
    Schwartz JE, Jandorf L, Krupp LB (1993) The measurement of fatigue: a new instrument. J Psychosom Res 37:753–762CrossRefPubMedGoogle Scholar
  11. 11.
    Fisk JD, Pontefract A, Ritvo PG, Archibald CJ, Murray TJ (1994) The impact of fatigue on patients with multiple sclerosis. Can J Neurol Sci 21:9–14PubMedGoogle Scholar
  12. 12.
    Guidelines MSCfCP (1998) Fatigue and multiple sclerosis. Paralyzed Veterans Association, Washington, DCGoogle Scholar
  13. 13.
    Penner IK, Raselli C, Stocklin M, Opwis K, Kappos L, Calabrese P (2009) The fatigue scale for motor and cognitive functions (FSMC): validation of a new instrument to assess multiple sclerosis-related fatigue. Mult Scler 15:1509–1517CrossRefPubMedGoogle Scholar
  14. 14.
    Flachenecker P, Muller G, Konig H, Meissner H, Toyka KV, Rieckmann P (2006) “Fatigue” in multiple sclerosis. Development and validation of the “Wurzburger Fatigue Inventory for MS”. Der Nervenarzt 77:165–166 (168–170, 172–164)CrossRefPubMedGoogle Scholar
  15. 15.
    Sehle A, Mündermann A, Starrost K et al (2011) Objective assessment of motor fatigue in multiple sclerosis using kinematic gait analysis: a pilot study. J Neuroeng Rehabil 8:59PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Harris GF, Smith PA (1996) Human motion analysis: current applications and future directions. Institute of Electrical and Electronics Engineers Press, New YorkGoogle Scholar
  17. 17.
    Schablowski-Trautmann M, Gerner HJ (2006) State-space analysis of joint angle kinematics in normal treadmill walking. Biomed Eng 5:294–298CrossRefGoogle Scholar
  18. 18.
    Rosenstein MT, Collins JJ, De Luca CJ (1993) A practical method for calculating largest Lyapunov exponents from small data sets. Phys D 65:117–134CrossRefGoogle Scholar
  19. 19.
    Kantz H (1994) A robust method to estimate the maximal Lyapunov exponent of a time series. Phys Lett A 185:77–87CrossRefGoogle Scholar
  20. 20.
    van Schooten KS, Rispens SM, Pijnappels M, Daffertshofer A, van Dieen JH (2013) Assessing gait stability: the influence of state space reconstruction on inter- and intra-day reliability of local dynamic stability during over-ground walking. J Biomech 46:137–141CrossRefPubMedGoogle Scholar
  21. 21.
    Vieten MM, Sehle A, Jensen RL (2013) A novel approach to quantify time series differences of gait data using attractor attributes. PLoS ONE. doi: 10.71371/journal.pone.0071824 PubMedCentralPubMedGoogle Scholar
  22. 22.
    Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381PubMedGoogle Scholar
  23. 23.
    Vieten MM (2004) Triple F (F 3) Filtering of kinematic data. In: Proceeding: 22 International Symposium on Biomechanics in Sports, pp 446–449Google Scholar
  24. 24.
    Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452CrossRefPubMedGoogle Scholar
  25. 25.
    Kuhner C, Burger C, Keller F, Hautzinger M (2007) Reliability and validity of the revised beck depression inventory (BDI-II). Results from German samples. Der Nervenarzt 78:651–656CrossRefPubMedGoogle Scholar
  26. 26.
    Hautzinger M, Keller F, Kühner C (2008) Beck depressions-inventar (BDI-II), revision. Reportpsychologie 6:301–302Google Scholar
  27. 27.
    ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories (2002) ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 166:111–117CrossRefGoogle Scholar
  28. 28.
    Paul L, Enright MD (2003) The six-minute walk test. Respir Care 48:783–785Google Scholar
  29. 29.
    Braley TJ, Chervin RD, Segal BM (2012) Fatigue, tiredness, lack of energy, and sleepiness in multiple sclerosis patients referred for clinical polysomnography. Mult Scler. doi: 10.1155/2012/673936 Google Scholar
  30. 30.
    Labuz-Roszak B, Kubicka-Baczyk K, Pierzchala K, Machowska-Majchrzak A, Skrzypek M (2012) Fatigue and its association with sleep disorders, depressive symptoms and anxiety in patients with multiple sclerosis. Neurol Neurochir Pol 46:309–317PubMedGoogle Scholar
  31. 31.
    Kelleher KJ, Spence W, Solomonidis S, Apatsidis D (2010) The characterisation of gait patterns of people with multiple sclerosis. Disabil Rehabil 32:1242–1250CrossRefPubMedGoogle Scholar
  32. 32.
    Spain RI, St George RJ, Salarian A et al (2012) Body-worn motion sensors detect balance and gait deficits in people with multiple sclerosis who have normal walking speed. Gait Posture 35:573–578PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Sosnoff JJ, Sandroff BM, Motl RW (2012) Quantifying gait abnormalities in persons with multiple sclerosis with minimal disability. Gait Posture 36:154–156CrossRefPubMedGoogle Scholar
  34. 34.
    Morris ME, Cantwell C, Vowels L, Dodd K (2002) Changes in gait and fatigue from morning to afternoon in people with multiple sclerosis. J Neurol Neurosurg Psychiatry 72:361–365PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Remelius JG, Jones SL, House JD et al (2012) Gait impairments in persons with multiple sclerosis across preferred and fixed walking speeds. Arch Phys Med Rehabil 93:1637–1642CrossRefPubMedGoogle Scholar
  36. 36.
    Geisler MW, Sliwinski M, Coyle PK, Masur DM, Doscher C, Krupp LB (1996) The effects of amantadine and pemoline on cognitive functioning in multiple sclerosis. Arch Neurol 53:185–188CrossRefPubMedGoogle Scholar
  37. 37.
    Schwartz CE, Coulthard-Morris L, Zeng Q (1996) Psychosocial correlates of fatigue in multiple sclerosis. Arch Phys Med Rehabil 77:165–170CrossRefPubMedGoogle Scholar
  38. 38.
    Krupp LB (2003) Fatigue in multiple sclerosis: definition, pathophysiology and treatment. CNS Drugs 17:225–234CrossRefPubMedGoogle Scholar
  39. 39.
    Genova HM, Rajagopalan V, Deluca J et al (2013) Examination of cognitive fatigue in multiple sclerosis using functional magnetic resonance imaging and diffusion tensor imaging. PLoS ONE. doi: 10.1371/journal.pone.0078811 Google Scholar
  40. 40.
    Sharma KR, Kent-Braun J, Mynhier MA, Weiner MW, Miller RG (1995) Evidence of an abnormal intramuscular component of fatigue in multiple sclerosis. Muscle Nerve 18:1403–1411PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Aida Sehle
    • 1
    • 2
    Email author
  • Manfred Vieten
    • 1
  • Simon Sailer
    • 3
  • Annegret Mündermann
    • 1
    • 4
    • 5
  • Christian Dettmers
    • 3
  1. 1.Division of Sport ScienceUniversity of KonstanzConstanceGermany
  2. 2.Kliniken Schmieder AllensbachAllensbachGermany
  3. 3.Kliniken Schmieder KonstanzConstanceGermany
  4. 4.School of PhysiotherapyUniversity of OtagoDunedinNew Zealand
  5. 5.Department of OrthopaedicsUniversity Hospital BaselBaselSwitzerland

Personalised recommendations