Skip to main content

Advertisement

Log in

Cerebral microbleeds in patients with Parkinson’s disease

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Cerebral microbleeds (CMBs) are known to be associated with cognitive impairments in the elderly and in patients with various diseases; however, the nature of this association has not yet been evaluated in Parkinson’s disease (PD). In the present study, we analyzed the incidence of CMBs in PD according to cognitive status, and the impact of CMBs on cognitive performance was also evaluated. The CMBs in PD with dementia (n = 36), mild cognitive impairment (MCI, n = 46), or cognitively normal (n = 41) were analyzed using conventional T2*-weighted gradient-recalled echo images. Additionally, the relationship between the presence of CMBs and cognitive performance on individual tests of cognitive subdomains was analyzed using a detailed neuropsychological test. CMBs occurred more frequently in PD patients with dementia (36.1 %) compared to those with MCI (15.2 %), those who are cognitively normal (14.6 %), and normal controls (12.2 %, p = 0.025). However, the significant association of CMBs with PD dementia disappeared after adjusting white matter hyperintensities (WMHs) as a covariate. The frequencies of deep, lobar, and infratentorial CMBs did not differ among the four groups. After adjusting for age, sex, years of education, and WMHs, PD patients with CMBs had poorer performance in attention domain compared with those without CMBs (34.9 vs 42.6, p = 0.018). The present data demonstrate that even though CMBs were inseparably associated with the presence of WMHs, CMBs occur more commonly in PD patients with dementia than in those without dementia. Additionally, the burden of CMBs may contribute to further cognitive impairment in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aarsland D, Andersen K, Larsen JP, Lolk A, Nielsen H, Kragh-Sorensen P (2001) Risk of dementia in Parkinson’s disease: a community-based, prospective study. Neurology 56:730–736

    Article  CAS  PubMed  Google Scholar 

  2. Cummings JL (1988) Intellectual impairment in Parkinson’s disease: clinical, pathologic, and biochemical correlates. J Geriatr Psychiatry Neurol 1:24–36

    Article  CAS  PubMed  Google Scholar 

  3. Aarsland D, Bronnick K, Larsen JP, Tysnes OB, Alves G (2009) Cognitive impairment in incident, untreated Parkinson disease: the Norwegian ParkWest study. Neurology 72:1121–1126. doi:10.1212/01.wnl.0000338632.00552.cb

    Article  CAS  PubMed  Google Scholar 

  4. Emre M (2003) Dementia associated with Parkinson’s disease. Lancet Neurol 2:229–237

    Article  CAS  PubMed  Google Scholar 

  5. Compta Y, Parkkinen L, O’Sullivan SS, Vandrovcova J, Holton JL, Collins C, Lashley T, Kallis C, Williams DR, de Silva R, Lees AJ, Revesz T (2011) Lewy- and Alzheimer-type pathologies in Parkinson’s disease dementia: which is more important? Brain 134:1493–1505. doi:10.1093/brain/awr031

    Article  PubMed Central  PubMed  Google Scholar 

  6. Shin J, Choi S, Lee JE, Lee HS, Sohn YH, Lee PH (2012) Subcortical white matter hyperintensities within the cholinergic pathways of Parkinson’s disease patients according to cognitive status. J Neurol Neurosurg Psychiatry 83:315–321. doi:10.1136/jnnp-2011-300872

    Article  PubMed  Google Scholar 

  7. Greenberg SM, Vernooij MW, Cordonnier C, Viswanathan A, Al-Shahi Salman R, Warach S, Launer LJ, Van Buchem MA, Breteler MM (2009) Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 8:165–174. doi:10.1016/s1474-4422(09)70013-4

    Article  PubMed Central  PubMed  Google Scholar 

  8. Fisher M, French S, Ji P, Kim RC (2010) Cerebral microbleeds in the elderly: a pathological analysis. Stroke 41:2782–2785. doi:10.1161/strokeaha.110.593657

    Article  PubMed Central  PubMed  Google Scholar 

  9. Fazekas F, Kleinert R, Roob G, Kleinert G, Kapeller P, Schmidt R, Hartung HP (1999) Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol 20:637–642

    CAS  PubMed  Google Scholar 

  10. Yakushiji Y, Nishiyama M, Yakushiji S, Hirotsu T, Uchino A, Nakajima J, Eriguchi M, Nanri Y, Hara M, Horikawa E, Kuroda Y (2008) Brain microbleeds and global cognitive function in adults without neurological disorder. Stroke 39:3323–3328

    Article  PubMed  Google Scholar 

  11. Seo SW, Hwa Lee B, Kim EJ, Chin J, Sun Cho Y, Yoon U, Na DL (2007) Clinical significance of microbleeds in subcortical vascular dementia. Stroke 38:1949–1951. doi:10.1161/strokeaha.106.477315

    Article  PubMed  Google Scholar 

  12. Zhang M, Chen M, Wang Q, Yun W, Zhang Z, Yin Q, Huang Q, Zhu W (2013) Relationship between cerebral microbleeds and cognitive function in lacunar infarct. J Int Med Res 41:347–355. doi:10.1177/0300060513476448

    Article  PubMed  Google Scholar 

  13. Liem MK, Lesnik Oberstein SA, Haan J, van der Neut IL, Ferrari MD, van Buchem MA, Middelkoop HA, van der Grond J (2009) MRI correlates of cognitive decline in CADASIL: a 7-year follow-up study. Neurology 72:143–148. doi:10.1212/01.wnl.0000339038.65508.96

    Article  CAS  PubMed  Google Scholar 

  14. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kang Y, Na D (2003) Seoul neuropsychological screening battery. Incheon Republic of Korea Human Brain Research & Consulting Corp

  16. Kim H, Na DL (1999) Brief report normative data on the Korean Version of the Boston Naming Test. J Clin Exp Neuropsychol 21:127–133

    Article  CAS  PubMed  Google Scholar 

  17. Litvan I, Goldman JG, Troster AI, Schmand BA, Weintraub D, Petersen RC, Mollenhauer B, Adler CH, Marder K, Williams-Gray CH, Aarsland D, Kulisevsky J, Rodriguez-Oroz MC, Burn DJ, Barker RA, Emre M (2012) Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force Guidelines. Mov Disord 27:349–356. doi:10.1002/mds.24893

    Article  PubMed Central  PubMed  Google Scholar 

  18. Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y, Broe GA, Cummings J, Dickson DW, Gauthier S, Goldman J, Goetz C, Korczyn A, Lees A, Levy R, Litvan I, McKeith I, Olanow W, Poewe W, Quinn N, Sampaio C, Tolosa E, Dubois B (2007) Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord 22:1689–1707. doi:10.1002/mds.21507 (quiz 1837)

    Article  PubMed  Google Scholar 

  19. Fahn S, Elton R, Members of the UPDRS Development Committee Unified Parkinson’s Disease rating scale (1987) Recent developments in Parkinson’s disease. In: Fahn SMC, Colne DB, Goldstein (eds) Florham Park NY Mac Millan Health care Information, pp 153–163

  20. Vernooij MW, van der Lugt A, Ikram MA, Wielopolski PA, Niessen WJ, Hofman A, Krestin GP, Breteler MM (2008) Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology 70:1208–1214. doi:10.1212/01.wnl.0000307750.41970.d9

    Article  CAS  PubMed  Google Scholar 

  21. Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjogren M, Wallin A, Ader H, Leys D, Pantoni L, Pasquier F, Erkinjuntti T, Scheltens P (2001) A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke 32:1318–1322

    Article  CAS  PubMed  Google Scholar 

  22. Poels MM, Ikram MA, van der Lugt A, Hofman A, Krestin GP, Breteler MM, Vernooij MW (2011) Incidence of cerebral microbleeds in the general population: the Rotterdam Scan Study. Stroke 42:656–661. doi:10.1161/strokeaha.110.607184

    Article  PubMed  Google Scholar 

  23. Vinters HV (1987) Cerebral amyloid angiopathy. A critical review. Stroke 18:311–324

    Article  CAS  PubMed  Google Scholar 

  24. Mesker DJ, Poels MM, Ikram MA, Vernooij MW, Hofman A, Vrooman HA, van der Lugt A, Breteler MM (2011) Lobar distribution of cerebral microbleeds: the Rotterdam Scan Study. Arch Neurol 68:656–659. doi:10.1001/archneurol.2011.93

    Article  PubMed  Google Scholar 

  25. Kim JS, Shim YS, Song IU, Yoo JY, Kim HT, Kim YI, Lee KS (2009) Cardiac sympathetic denervation and its association with cognitive deficits in Parkinson’s disease. Parkinsonism Relat Disord 15:706–708. doi:10.1016/j.parkreldis.2009.01.008

    Article  PubMed  Google Scholar 

  26. Poewe W (2007) Dysautonomia and cognitive dysfunction in Parkinson’s disease. Mov Disord 22(Suppl 17):S374–S378. doi:10.1002/mds.21681

    Article  PubMed  Google Scholar 

  27. Kim JS, Oh YS, Lee KS, Kim YI, Yang DW, Goldstein DS (2012) Association of cognitive dysfunction with neurocirculatory abnormalities in early Parkinson disease. Neurology 79:1323–1331. doi:10.1212/WNL.0b013e31826c1acd

    Article  PubMed Central  PubMed  Google Scholar 

  28. Kato H, Izumiyama M, Izumiyama K, Takahashi A, Itoyama Y (2002) Silent cerebral microbleeds on T2*-weighted MRI: correlation with stroke subtype, stroke recurrence, and leukoaraiosis. Stroke 33:1536–1540

    Article  PubMed  Google Scholar 

  29. Koennecke HC (2006) Cerebral microbleeds on MRI: prevalence, associations, and potential clinical implications. Neurology 66:165–171. doi:10.1212/01.wnl.0000194266.55694.1e

    Article  PubMed  Google Scholar 

  30. Yamada S, Saiki M, Satow T, Fukuda A, Ito M, Minami S, Miyamoto S (2012) Periventricular and deep white matter leukoaraiosis have a closer association with cerebral microbleeds than age. Eur J Neurol 19:98–104. doi:10.1111/j.1468-1331.2011.03451.x

    Article  CAS  PubMed  Google Scholar 

  31. Sullivan P, Pary R, Telang F, Rifai AH, Zubenko GS (1990) Risk factors for white matter changes detected by magnetic resonance imaging in the elderly. Stroke 21:1424–1428

    Article  CAS  PubMed  Google Scholar 

  32. de Leeuw FE, de Groot JC, Oudkerk M, Witteman JC, Hofman A, van Gijn J, Breteler MM (2002) Hypertension and cerebral white matter lesions in a prospective cohort study. Brain 125:765–772

    Article  PubMed  Google Scholar 

  33. Murray AD, Staff RT, Shenkin SD, Deary IJ, Starr JM, Whalley LJ (2005) Brain white matter hyperintensities: relative importance of vascular risk factors in nondemented elderly people. Radiology 237:251–257. doi:10.1148/radiol.2371041496

    Article  PubMed  Google Scholar 

  34. Lee SJ, Kim JS, Yoo JY, Song IU, Kim BS, Jung SL, Yang DW, Kim YI, Jeong DS, Lee KS (2010) Influence of white matter hyperintensities on the cognition of patients with Parkinson disease. Alzheimer Dis Assoc Disord 24:227–233. doi:10.1097/WAD.0b013e3181d71a13

    PubMed  Google Scholar 

  35. Lee PH, Kim HS, Lee JE, Choi Y, Hong JY, Nam HS, Sohn YH, Kim HO (2011) Comparison of endothelial progenitor cells in Parkinson’s disease patients treated with levodopa and levodopa/COMT inhibitor. PLoS One 6:e21536. doi:10.1371/journal.pone.0021536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Rouhl RP, van Oostenbrugge RJ, Damoiseaux J, Tervaert JW, Lodder J (2008) Endothelial progenitor cell research in stroke: a potential shift in pathophysiological and therapeutical concepts. Stroke 39:2158–2165. doi:10.1161/strokeaha.107.507251

    Article  PubMed  Google Scholar 

  37. Jickling G, Salam A, Mohammad A, Hussain MS, Scozzafava J, Nasser AM, Jeerakathil T, Shuaib A, Camicioli R (2009) Circulating endothelial progenitor cells and age-related white matter changes. Stroke 40:3191–3196. doi:10.1161/strokeaha.109.554527

    Article  PubMed  Google Scholar 

  38. Young VG, Halliday GM, Kril JJ (2008) Neuropathologic correlates of white matter hyperintensities. Neurology 71:804–811. doi:10.1212/01.wnl.0000319691.50117.54

    Article  PubMed  Google Scholar 

  39. Koennecke H (2006) Cerebral microbleeds on MRI: prevalence, associations, and potential clinical implications. Neurology 66:165–171

    Article  PubMed  Google Scholar 

  40. Bartels AL, van Berckel BN, Lubberink M, Luurtsema G, Lammertsma AA, Leenders KL (2008) Blood-brain barrier P-glycoprotein function is not impaired in early Parkinson’s disease. Parkinsonism Relat Disord 14:505–508. doi:10.1016/j.parkreldis.2007.11.007

    Article  CAS  PubMed  Google Scholar 

  41. Bartels AL, Kortekaas R, Bart J, Willemsen AT, de Klerk OL, de Vries JJ, van Oostrom JC, Leenders KL (2009) Blood-brain barrier P-glycoprotein function decreases in specific brain regions with aging: a possible role in progressive neurodegeneration. Neurobiol Aging 30:1818–1824. doi:10.1016/j.neurobiolaging.2008.02.002

    Article  CAS  PubMed  Google Scholar 

  42. Mok V, Srikanth V, Xiong Y, Phan TG, Moran C, Chu S, Zhao Q, Chu WW, Wong A, Hong Z, Liu X, Wong LK, Ding D (2014) Race-ethnicity and cerebral small vessel disease—comparison between Chinese and White populations. Int J Stroke. doi:10.1111/ijs.12270

    PubMed  Google Scholar 

  43. Feigin VL, Lawes CM, Bennett DA, Anderson CS (2003) Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol 2:43–53

    Article  PubMed  Google Scholar 

  44. Cordonnier C, van der Flier WM, Sluimer JD, Leys D, Barkhof F, Scheltens P (2006) Prevalence and severity of microbleeds in a memory clinic setting. Neurology 66:1356–1360. doi:10.1212/01.wnl.0000210535.20297.ae

    Article  CAS  PubMed  Google Scholar 

  45. Kwa VI, Franke CL, Verbeeten B Jr, Stam J (1998) Silent intracerebral microhemorrhages in patients with ischemic stroke. Amsterdam Vascular Medicine Group. Ann Neurol 44:372–377. doi:10.1002/ana.410440313

    Article  CAS  PubMed  Google Scholar 

  46. Werring DJ, Frazer DW, Coward LJ, Losseff NA, Watt H, Cipolotti L, Brown MM, Jager HR (2004) Cognitive dysfunction in patients with cerebral microbleeds on T2*-weighted gradient-echo MRI. Brain 127:2265–2275. doi:10.1093/brain/awh253

    Article  PubMed  Google Scholar 

  47. Patel B, Lawrence AJ, Chung AW, Rich P, Mackinnon AD, Morris RG, Barrick TR, Markus HS (2013) Cerebral microbleeds and cognition in patients with symptomatic small vessel disease. Stroke 44:356–361. doi:10.1161/strokeaha.112.670216

    Article  PubMed  Google Scholar 

  48. Benedictus MR, Goos JD, Binnewijzend MA, Muller M, Barkhof F, Scheltens P, Prins ND, van der Flier WM (2013) Specific risk factors for microbleeds and white matter hyperintensities in Alzheimer’s disease. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2013.04.023

    PubMed  Google Scholar 

  49. Klinkenberg I, Sambeth A, Blokland A (2011) Acetylcholine and attention. Behav Brain Res 221:430–442

    Article  CAS  PubMed  Google Scholar 

  50. Jeerakathil T, Wolf PA, Beiser A, Hald JK, Au R, Kase CS, Massaro JM, DeCarli C (2004) Cerebral microbleeds: prevalence and associations with cardiovascular risk factors in the Framingham Study. Stroke 35:1831–1835. doi:10.1161/01.STR.0000131809.35202.1b

    Article  PubMed  Google Scholar 

  51. Lee SH, Bae HJ, Ko SB, Kim H, Yoon BW, Roh JK (2004) Comparative analysis of the spatial distribution and severity of cerebral microbleeds and old lacunes. J Neurol Neurosurg Psychiatry 75:423–427

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant of the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare and Family Affairs, Republic of Korea (A121942).

Conflicts of interest

Nothing to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phil Hyu Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ham, J.H., Yi, H., Sunwoo, M.K. et al. Cerebral microbleeds in patients with Parkinson’s disease. J Neurol 261, 1628–1635 (2014). https://doi.org/10.1007/s00415-014-7403-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-014-7403-y

Keywords

Navigation