Skip to main content

Advertisement

Log in

The gender-specific association of CXCL16 A181V gene polymorphism with susceptibility to multiple sclerosis, and its effects on PBMC mRNA and plasma soluble CXCL16 levels: preliminary findings

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

CXC ligand 16 (CXCL16) is a multifunctional chemokine involved in cell adhesion and chemoattraction as well as in the scavenging of oxidized lipoproteins. Experimental data suggest the roles of CXCL16 in pathogenesis of multiple sclerosis (MS). A181V polymorphism in the human CXCL16 gene has been associated with the clinical course of certain chronic inflammatory diseases. The aim of this study was to analyze the effects of CXCL16 A181V polymorphism on: (1) susceptibility to MS and disease course, (2) peripheral blood mononuclear cells (PBMC) CXCL16 mRNA levels and plasma soluble CXCL16 levels of patients with MS and healthy controls. In this study, 459 MS patients and 303 controls were included. Real-time PCR-based methods were applied for genotyping of CXCL16 A181V and for CXCL16 gene expression analysis. Quantitative sandwich enzyme immunoassay was performed for quantification of plasma soluble CXCL16. CXCL16 AA genotype had a significant protective effect on MS susceptibility in women (OR = 0.53, ±95 % CI = 0.35–0.82, p = 0.004). The V allele-containing genotypes were associated with significantly higher CXCL16 mRNA levels in PBMC of both female (mean factor = 1.81, S.E. = 1.14–2.77, p < 0.01) and male (mean factor = 1.58, S.E. = 1.35–1.73, p < 0.01) controls. No significant association of the CXCL16 polymorphism was established either with soluble CXCL16 plasma levels or with clinical parameters and course of MS. The main finding of this study is gender-specific association of CXCL16 A181V polymorphism with susceptibility to MS in females. The current results should be replicated and validated in the larger sample group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Matloubian M, David A, Engel S, Ryan JE, Cyster JG (2000) A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nat Immunol 1:298–304

    Article  CAS  PubMed  Google Scholar 

  2. Shimaoka T, Kume N, Minami M, Hayashida K, Kataoka H, Kita T, Yonehara S (2000) Molecular cloning of a novel scavenger receptor for oxidized low density lipoprotein, SR-PSOX, on macrophages. J Biol Chem 275(52):40663–40666

    Article  CAS  PubMed  Google Scholar 

  3. Shimaoka T, Nakayama T, Kume N, Takahashi S, Yamaguchi J, Minami M, Hayashida K, Kita T, Ohsumi J, Yoshie O, Yonehara S (2003) Cutting edge: SR-PSOX/CXC chemokine ligand 16 mediates bacterial phagocytosis by APCs through its chemokine domain. J Immunol 171(4):1647–1651

    Article  CAS  PubMed  Google Scholar 

  4. Kim CH, Kunkel EJ, Boisvert J, Johnston B, Campbell JJ, Genovese MC, Greenberg HB, Butcher EC (2001) Bonzo/CXCR6 expression defines type 1-polarized T-cell subsets with extralymphoid tissue homing potential. J Clin Invest 107(5):595–601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Gough PJ, Garton KJ, Wille PT, Rychlewski M, Dempsey PJ, Raines EW (2004) A disintegrin and metalloproteinase 10-mediated cleavage and shedding regulates the cell surface expression of CXC chemokine ligand 16. J Immunol 172(6):3678–3685

    Article  CAS  PubMed  Google Scholar 

  6. Abel S, Hundhausen C, Mentlein R, Schulte A, Berkhout TA, Broadway N, Hartmann D, Sedlacek R, Dietrich S, Muetze B, Schuster B, Kallen KJ, Saftig P, Rose-John S, Ludwig A (2004) The transmembrane CXC-chemokine ligand 16 is induced by IFN-gamma and TNF-alpha and shed by the activity of the disintegrin-like metalloproteinase ADAM10. J Immunol 172(10):6362–6372

    Article  CAS  PubMed  Google Scholar 

  7. Wilbanks A, Zondlo SC, Murphy K, Mak S, Soler D, Langdon P, Andrew DP, Wu L, Briskin M (2001) Expression cloning of the STRL33/BONZO/TYMSTRligand reveals elements of CC, CXC, and CX3C chemokines. J Immunol 166(8):5145–5154

    Article  CAS  PubMed  Google Scholar 

  8. Calabresi PA, Yun SH, Allie R, Whartenby KA (2002) Chemokine receptor expression on MBP-reactive T cells: CXCR6 is a marker of IFNgamma-producing effector cells. J Neuroimmunol 127(1–2):96–105

    Article  CAS  PubMed  Google Scholar 

  9. D’Aversa TG, Weidenheim KM, Berman JW (2002) CD40-CD40L interactions induce chemokine expression by human microglia: implications for human immunodeficiency virus encephalitis and multiple sclerosis. Am J Pathol 160(2):559–567

    Article  PubMed Central  PubMed  Google Scholar 

  10. Mahad DJ, Howell SJ, Woodroofe MN (2002) Expression of chemokines in the CSF and correlation with clinical disease activity in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 72(4):498–502

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Satoh J, Nanri Y, Tabunoki H, Yamamura T (2006) Microarray analysis identifies a set of CXCR3 and CCR2 ligand chemokines as early IFNbeta-responsive genes in peripheral blood lymphocytes in vitro: an implication for IFNbeta-related adverse effects in multiple sclerosis. BMC Neurol 6:18

    Article  PubMed Central  PubMed  Google Scholar 

  12. Ludwig A, Schulte A, Schnack C, Hundhausen C, Reiss K, Brodway N, Held-Feindt J, Mentlein R (2005) Enhanced expression and shedding of the transmembrane chemokine CXCL16 by reactive astrocytes and glioma cells. J Neurochem 93(5):1293–1303

    Article  CAS  PubMed  Google Scholar 

  13. Fukumoto N, Shimaoka T, Fujimura H, Sakoda S, Tanaka M, Kita T, Yonehara S (2004) Critical roles of CXC chemokine ligand 16/scavenger receptor that binds phosphatidylserine and oxidized lipoprotein in the pathogenesis of both acute and adoptive transfer experimental autoimmune encephalomyelitis. J Immunol 173(3):1620–1627

    Article  CAS  PubMed  Google Scholar 

  14. le Blanc LM, van Lieshout AW, Adema GJ, van Riel PL, Verbeek MM, Radstake TR (2006) CXCL16 is elevated in the cerebrospinal fluid versus serum and in inflammatory conditions with suspected and proved central nervous system involvement. Neurosci Lett 397(1–2):145–148

    Article  PubMed  Google Scholar 

  15. Hendrickx DA, Koning N, Schuurman KG, van Strien ME, van Eden CG, Hamann J, Huitinga I (2013) Selective upregulation of scavenger receptors in and around demyelinating areas in multiple sclerosis. J Neuropathol Exp Neurol 72(2):106–118

    Article  CAS  PubMed  Google Scholar 

  16. Lundberg GA, Kellin A, Samnegård A, Lundman P, Tornvall P, Dimmeler S, Zeiher AM, Hamsten A, Hansson GK, Eriksson P (2005) Severity of coronary artery stenosis is associated with a polymorphism in the CXCL16/SR-PSOX gene. J Intern Med 257(5):415–422

    Article  CAS  PubMed  Google Scholar 

  17. Petit SJ, Wise EL, Chambers JC, Sehmi J, Chayen NE, Kooner JS, Pease JE (2011) The CXCL16 A181V mutation selectively inhibits monocyte adhesion to CXCR6 but is not associated with human coronary heart disease. Arterioscler Thromb Vasc Biol 31(4):914–920

    Article  CAS  PubMed  Google Scholar 

  18. Seiderer J, Dambacher J, Leistner D, Tillack C, Glas J, Niess JH, Pfennig S, Jürgens M, Müller-Myhsok B, Göke B, Ochsenkühn T, Lohse P, Reinecker HC, Brand S (2008) Genotype–phenotype analysis of the CXCL16 p.Ala181Val polymorphism in inflammatory bowel disease. Clin Immunol 127(1):49–55

    Article  CAS  PubMed  Google Scholar 

  19. Lee YH, Kim JH, Song GG (2013) Pathway analysis of a genome-wide association study in schizophrenia. Gene 525(1):107–115

    Article  CAS  PubMed  Google Scholar 

  20. International Multiple Sclerosis Genetics Consortium, Wellcome Trust Case Control Consortium 2 (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476:214–219

    Article  Google Scholar 

  21. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O’Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69(2):292–302

    Article  PubMed Central  PubMed  Google Scholar 

  22. Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on clinical trials of New Agents in Multiple Sclerosis. Neurol 46:907–911

    Article  CAS  Google Scholar 

  23. Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurol 33:1444–1452

    Article  CAS  Google Scholar 

  24. Roxburgh RH, Seaman SR, Masterman T, Hensiek AE, Sawcer SJ, Vukusic S, Achiti I, Confavreux C, Coustans M, le Page E, Edan G, McDonnell GV, Hawkins S, Trojano M, Liguori M, Cocco E, Marrosu MG, Tesser F, Leone MA, Weber A, Zipp F, Miterski B, Epplen JT, Oturai A, Sørensen PS, Celius EG, Lara NT, Montalban X, Villoslada P, Silva AM, Marta M, Leite I, Dubois B, Rubio J, Butzkueven H, Kilpatrick T, Mycko MP, Selmaj KW, Rio ME, Sá M, Salemi G, Savettieri G, Hillert J, Compston DA (2005) Multiple sclerosis severity score: using disability and disease duration to rate disease severity. Neurol 64(7):1144–1151

    Article  CAS  Google Scholar 

  25. Dupont WD, Plummer WD (1990) Power and sample size calculations: a review and computer program. Control Clin Trials 11:116–128

    Article  CAS  PubMed  Google Scholar 

  26. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucl Ac Res 30(9):e36

    Article  Google Scholar 

  27. Greer JM, McCombe PA (2011) Role of gender in multiple sclerosis: clinical effects and potential molecular mechanisms. J Neuroimmunol 234:7–18

    Article  CAS  PubMed  Google Scholar 

  28. Izquierdo MC, Sanz AB, Mezzano S, Blanco J, Carrasco S, Sanchez-Niño MD, Benito-Martín A, Ruiz-Ortega M, Egido J, Ortiz A (2012) TWEAK (tumor necrosis factor-like weak inducer of apoptosis) activates CXCL16 expression during renal tubulointerstitial inflammation. Kidney Int 81(11):1098–1107

    Article  CAS  PubMed  Google Scholar 

  29. Patel DN, Bailey SR, Gresham JK, Schuchman DB, Shelhamer JH, Goldstein BJ, Foxwell BM, Stemerman MB, Maranchie JK, Valente AJ, Mummidi S, Chandrasekar B (2006) TLR4-NOX4-AP-1 signaling mediates lipopolysaccharide-induced CXCR6 expression in human aortic smooth muscle cells. Biochem Biophys Res Commun 347(4):1113–1120

    Article  CAS  PubMed  Google Scholar 

  30. Wang KD, Liu ZZ, Wang RM, Wang YJ, Zhang GJ, Su JR, Kang XX (2010) Chemokine CXC Ligand 16 serum concentration but not A181V genotype is associated with atherosclerotic stroke. Clin Chim Acta 411(19–20):1447–1451

    Article  CAS  PubMed  Google Scholar 

  31. Cid MC, Kleinman HK, Grant DS, Schnaper HW, Fauci AS, Hoffman GS (1994) Estradiol enhances leukocyte binding to tumor necrosis factor (TNF)-stimulated endothelial cells via an increase in TNF-induced adhesion molecules E-selectin, intercellular adhesion molecule type 1, and vascular cell adhesion molecule type 1. J Clin Invest 93(1):17–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Wuttge DM, Zhou X, Sheikine Y, Wågsäter D, Stemme V, Hedin U, Stemme S, Hansson GK, Sirsjö A (2004) CXCL16/SR-PSOX is an interferon-gamma-regulated chemokine and scavenger receptor expressed in atherosclerotic lesions. Arterioscler Thromb Vasc Biol 24(4):750–755

    Article  CAS  PubMed  Google Scholar 

  33. Hofnagel O, Luechtenborg B, Plenz G, Robenek H (2002) Expression of the novel scavenger receptor SR-PSOX in cultured aortic smooth muscle cells and umbilical endothelial cells. Arterioscler Thromb Vasc Biol 22(4):710–711

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by Serbian Ministry of Education and Science Grants No. OI175085 and III41028.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical standards

The Ethical Committee of Military Medical Academy, Belgrade, Serbia, approved this study and each participant gave their written informed consent to participate in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Živković.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stojković, L., Stanković, A., Djurić, T. et al. The gender-specific association of CXCL16 A181V gene polymorphism with susceptibility to multiple sclerosis, and its effects on PBMC mRNA and plasma soluble CXCL16 levels: preliminary findings. J Neurol 261, 1544–1551 (2014). https://doi.org/10.1007/s00415-014-7379-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-014-7379-7

Keywords

Navigation