Journal of Neurology

, Volume 260, Issue 9, pp 2228–2236 | Cite as

Persistence of associations between cognitive impairment and motor dysfunction in the early phase of Parkinson’s disease

Original Communication

Abstract

The relation between cognitive and motor functions in Parkinson’s disease is not fully understood. In an incidence population of newly diagnosed drug naïve patients with Parkinson’s disease, associations were found between the degree of bradykinesia and postural instability and gait disturbances, measured by the Unified Disease Rating Scale, and different types of cognitive functions. To investigate the stability of these associations over time, we explored the association of differences between baseline and 1-year follow-up in 91 incident cases with Parkinson’s disease. The magnitude of change between the two assessments was assessed together with analysis of differences based on which dopaminergic medication was used. Change in bradykinesia was associated with change in working memory and mental flexibility. Changes in postural instability and gait disturbances were associated with change in visuospatial memory. A negative effect of the dopamine agonist pramipexole on phonemic fluency performance was found compared to treatment with other dopaminergic drugs. Change in cognitive and motor functions were associated from time of diagnosis until 1 year after diagnosis. These persisting findings strengthen results from a previous cross-sectional study suggesting similar associations. The effects of dopamine agonists on phonemic fluency should be investigated further.

Keywords

Parkinson’s disease Cognition Population-based Prospective Dopamine agonist 

References

  1. 1.
    Helmich RC, Hallett M, Deuschl G, Toni I, Bloem BR (2012) Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? Brain 135:3206–3226. doi:10.1093/brain/aws023 PubMedCrossRefGoogle Scholar
  2. 2.
    Doder M, Rabiner EA, Turjanski N, Lees AJ, Brooks DJ (2003) Tremor in Parkinson’s disease and serotonergic dysfunction: an 11C-WAY 100635 PET study. Neurology 60:601–605. doi:10.1212/01.WNL.0000031424.51127.2B PubMedCrossRefGoogle Scholar
  3. 3.
    Bohnen NI, Müller MLTM, Koeppe RA, Studenski SA, Kilbourn MA, Frey KA, Albin RL (2009) History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology 73:1670–1676PubMedCrossRefGoogle Scholar
  4. 4.
    Yarnall A, Rochester L, Burn DJ (2011) The interplay of cholinergic function, attention, and falls in Parkinson’s disease. Mov Disord 26:2496–2503. doi:10.1002/mds.23932 PubMedCrossRefGoogle Scholar
  5. 5.
    Elgh E, Domellöf M, Linder J, Edström M, Stenlund H, Forsgren L (2009) Cognitive function in early Parkinson’s disease: a population-based study. Eur J Neurol 16:1278–1284. doi:10.1111/j.1468-1331.2009.02707.x PubMedCrossRefGoogle Scholar
  6. 6.
    Aarsland D, Brønnick K, Larsen JP, Tysnes OB, Alves G (2009) Cognitive impairment in incident, untreated Parkinson disease: the Norwegian ParkWest study. Neurology 72:1121–1126. doi:10.1212/01.wnl.0000338632.00552.cb PubMedCrossRefGoogle Scholar
  7. 7.
    Burn DJ, Rowan EN, Allan LM, Molloy S, O’Brien JT, McKeith IG (2006) Motor subtype and cognitive decline in Parkinson’s disease, Parkinson’s disease with dementia, and dementia with Lewy bodies. J Neurol Neurosurg Psychiatry 77:585–589. doi:10.1136/jnnp.2005.081711 PubMedCrossRefGoogle Scholar
  8. 8.
    Williams-Gray CH, Foltynie T, Brayne CEG, Robbins TW, Barker RA (2007) Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain 130:1787–1798. doi:10.1093/brain/awm111 PubMedCrossRefGoogle Scholar
  9. 9.
    Domellöf ME, Elgh E, Forsgren L (2011) The relation between cognition and motor dysfunction in drug-naïve newly diagnosed patients with Parkinson’s disease. Mov Disord 26:2183–2189. doi:10.1002/mds.23814 PubMedCrossRefGoogle Scholar
  10. 10.
    Amboni M, Barone P, Iuppariello L et al (2012) Gait patterns in parkinsonian patients with or without mild cognitive impairment. Mov Disord 27:1536–1543. doi:10.1002/mds.25165 PubMedCrossRefGoogle Scholar
  11. 11.
    Bäckman L, Nyberg L, Lindenberger U, Li S-C, Farde L (2006) The correlative triad among aging, dopamine, and cognition: current status and future prospects. Neurosci Biobehav R 30:791–807. doi:10.1016/j.neubiorev.2006.06.005 CrossRefGoogle Scholar
  12. 12.
    Cools R (2006) Dopaminergic modulation of cognitive function-implications for L-DOPA treatment in Parkinson’s disease. Neurosci Biobehav R 30:1–23. doi:10.1016/j.neubiorev.2005.03.024 CrossRefGoogle Scholar
  13. 13.
    Gothham AM, Brown RG, Marsden CD (1988) “Frontal” cognitive function in patients with Parkinson’s disease “on” and “of” levodopa. Brain 111:299–321. doi:10.1093/brain/111.2.299 CrossRefGoogle Scholar
  14. 14.
    Brusa L, Bassi A, Stefani A, Pierantozzi M, Peppe A, Caramia MD, Boffa L, Ruggieri S, Stanzione P (2003) Pramipexole in comparison to l-dopa: a neuropsychological study. J Neural Transm 110:373–380. doi:10.1007/s00702-002-0811-7 PubMedCrossRefGoogle Scholar
  15. 15.
    Moustafa AA, Herzallah MM, Gluck MA (2013) Dissociating the cognitive effects of levodopa versus dopamine agonists in a neurocomputational model of learning in Parkinson’s disease. Neurodegener Diseas 11:102–111CrossRefGoogle Scholar
  16. 16.
    Beaulieu J-M, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217. doi:10.1124/pr.110.002642 PubMedCrossRefGoogle Scholar
  17. 17.
    Linder J, Stenlund H, Forsgren L (2010) Incidence of Parkinson’s disease and parkinsonism in northern Sweden: a population-based study. Mov Disord 25:341–348. doi:10.1002/mds.22987 PubMedCrossRefGoogle Scholar
  18. 18.
    Gilman S, Low P, Quinn N et al (1999) Consensus statement on the diagnosis of multiple system atrophy. J Neurol Sci 163:94–98. doi:10.1016/S0022-510X(98)00304-9 PubMedCrossRefGoogle Scholar
  19. 19.
    McKeith IG, Dickson DW, Lowe J et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB consortium. Neurology 65:1863–1872. doi:10.1212/01.wnl.0000187889.17253.b1 PubMedCrossRefGoogle Scholar
  20. 20.
    Montgomery SA, Asberg M (1979) A new depression scale designed to be sensitive to change. Brit J Psychiatry 134:382–389. doi:10.1192/bjp.134.4382 CrossRefGoogle Scholar
  21. 21.
    Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE (2010) Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord 25:2649–2653. doi:10.1002/mds.23429 PubMedCrossRefGoogle Scholar
  22. 22.
    Fahn S, Elton RI (1987) Members of the UPDRS development committee. In: Fahn S, Calne DB, Goldstein M (eds) Recent development in Parkinson’s disease. Mcmillan Health Care Information, New York, pp 153–164Google Scholar
  23. 23.
    Louis ED, Cote L, Alfaro B, Mejia H, Marder KTMX (1999) Progression of parkinsonian signs in parkinson disease. Arch Neurol 56:334–337PubMedCrossRefGoogle Scholar
  24. 24.
    Uc EY, McDermott MP, Marder KS, Anderson SW, Litvan I, Como PG, Auinger P, Chou KL, Growdon JC (2009) Incidence of and risk factors for cognitive impairment in an early Parkinson disease clinical trial cohort. Neurology 73:1469–1477. doi:10.1212/WNL.0b013e3181bf992f PubMedCrossRefGoogle Scholar
  25. 25.
    Benedict RH, Zgaljardic DJ (1998) Practice effects during repeated administrations of memory tests with and without alternate forms. J Clin Exp Neuropsychol 20:339–352. doi:10.1076/jcen.20.3.339.822 PubMedCrossRefGoogle Scholar
  26. 26.
    Buschke H (1973) Selective reminding for analysis of memory and learning. J Verb Learn Verb Behav 12:543–550. doi:10.1016/S0022-5371(73)80034-9 CrossRefGoogle Scholar
  27. 27.
    Benedict RHB, Schretlen D, Groninger L, Dobraski M, Shpritz B (1996) Revision of the brief visuospatial memory test: studies of normal performance, reliability and validity. Psychol Assess 8:145–153. doi:10.1037/1040-3590 CrossRefGoogle Scholar
  28. 28.
    Wechsler D (1997) Wechsler Adult Intelligence Scale, 3rd edition (WAIS III): Test Manual, 3rd edn. Psychology, New YorkGoogle Scholar
  29. 29.
    Reitan RM (1958) Validity of the trail making test as an indicator of organic brain damage. Percept Motor Skill 8:271–276. doi:10.2466/PMS.8.7.271-276 Google Scholar
  30. 30.
    Spreen O, Strauss E (1991) A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary, 3rd edn. Test 2nd. Oxford University Press, OxfordGoogle Scholar
  31. 31.
    Benton AL (1994) Contributions to neuropsychological assessment: a clinical manual. Oxford University Press, OxfordGoogle Scholar
  32. 32.
    Rothman KJ (1990) No adjustments are needed for multiple comparisons. Epidemiology 1:43–46PubMedCrossRefGoogle Scholar
  33. 33.
    Bohnen NI, Kaufer DI, Hendrickson R, Ivanco LS, Lopresti BJ, Constantine GM, Mathis CA, Davis JG, Moore RY, Dekosky ST (2006) Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia. J Neurology 253:242–247. doi:10.1007/s00415-005-0971-0 CrossRefGoogle Scholar
  34. 34.
    Helmich RC, De Lange FP, Bloem BR, Toni I (2007) Cerebral compensation during motor imagery in Parkinson’s disease. Neuropsychologia 45:2201–2215 10.1016/j.neuropsychologia.2007.02.024PubMedCrossRefGoogle Scholar
  35. 35.
    Lewis GN, Byblow WD, Walt SE (2000) Stride length regulation in Parkinson’s disease: the use of extrinsic, visual cues. Brain 123:2077–2090. doi:10.1093/brain/123.10.2077 PubMedCrossRefGoogle Scholar
  36. 36.
    Cools R, D’Esposito M (2011) Inverted U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry 69:113–125CrossRefGoogle Scholar
  37. 37.
    Williams-Gray CH, Hampshire A, Robbins TW, Owen AM, Barker RA (2007) Catechol O-methyltransferase Val158Met genotype influences frontoparietal activity during planning in patients with Parkinson’s disease. J Neurosci 27:4832–4838. doi:10.1523/JNEUROSCI.0774-07.2007 PubMedCrossRefGoogle Scholar
  38. 38.
    Vingerhoets FJ, Schulzer M, Calne DB, Snow BJ (1997) Which clinical sign of Parkinson’s disease best reflects the nigrostriatal lesion? Ann Neurol 41:58–64. doi:10.1002/ana.410410111 PubMedCrossRefGoogle Scholar
  39. 39.
    Löber S, Hübner H, Tschammer N, Gmeiner P (2011) Recent advances in the search for D3- and D4-selective drugs: probes, models and candidates. Trends in Pharm Sci 32:148–157. doi:10.1016/j.tips.2010.12.003 CrossRefGoogle Scholar
  40. 40.
    Lange KW, Robbins TW, Marsden CD, James M, Owen AM, Paul GM (1992) l-Dopa withdrawal in Parkinson’s disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction. Psychopharm 107:394–404. doi:10.1007/BF02245167 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Magdalena E. Domellöf
    • 1
  • Lars Forsgren
    • 1
  • Eva Elgh
    • 2
  1. 1.Department of Pharmacology and Clinical Neuroscience, NeurologyUmeå UniversityUmeåSweden
  2. 2.Department of Community Medicine and Rehabilitation, Geriatric MedicineUmeå UniversityUmeåSweden

Personalised recommendations