Skip to main content
Log in

Persistence of associations between cognitive impairment and motor dysfunction in the early phase of Parkinson’s disease

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The relation between cognitive and motor functions in Parkinson’s disease is not fully understood. In an incidence population of newly diagnosed drug naïve patients with Parkinson’s disease, associations were found between the degree of bradykinesia and postural instability and gait disturbances, measured by the Unified Disease Rating Scale, and different types of cognitive functions. To investigate the stability of these associations over time, we explored the association of differences between baseline and 1-year follow-up in 91 incident cases with Parkinson’s disease. The magnitude of change between the two assessments was assessed together with analysis of differences based on which dopaminergic medication was used. Change in bradykinesia was associated with change in working memory and mental flexibility. Changes in postural instability and gait disturbances were associated with change in visuospatial memory. A negative effect of the dopamine agonist pramipexole on phonemic fluency performance was found compared to treatment with other dopaminergic drugs. Change in cognitive and motor functions were associated from time of diagnosis until 1 year after diagnosis. These persisting findings strengthen results from a previous cross-sectional study suggesting similar associations. The effects of dopamine agonists on phonemic fluency should be investigated further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Helmich RC, Hallett M, Deuschl G, Toni I, Bloem BR (2012) Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? Brain 135:3206–3226. doi:10.1093/brain/aws023

    Article  PubMed  Google Scholar 

  2. Doder M, Rabiner EA, Turjanski N, Lees AJ, Brooks DJ (2003) Tremor in Parkinson’s disease and serotonergic dysfunction: an 11C-WAY 100635 PET study. Neurology 60:601–605. doi:10.1212/01.WNL.0000031424.51127.2B

    Article  PubMed  CAS  Google Scholar 

  3. Bohnen NI, Müller MLTM, Koeppe RA, Studenski SA, Kilbourn MA, Frey KA, Albin RL (2009) History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology 73:1670–1676

    Article  PubMed  CAS  Google Scholar 

  4. Yarnall A, Rochester L, Burn DJ (2011) The interplay of cholinergic function, attention, and falls in Parkinson’s disease. Mov Disord 26:2496–2503. doi:10.1002/mds.23932

    Article  PubMed  Google Scholar 

  5. Elgh E, Domellöf M, Linder J, Edström M, Stenlund H, Forsgren L (2009) Cognitive function in early Parkinson’s disease: a population-based study. Eur J Neurol 16:1278–1284. doi:10.1111/j.1468-1331.2009.02707.x

    Article  PubMed  CAS  Google Scholar 

  6. Aarsland D, Brønnick K, Larsen JP, Tysnes OB, Alves G (2009) Cognitive impairment in incident, untreated Parkinson disease: the Norwegian ParkWest study. Neurology 72:1121–1126. doi:10.1212/01.wnl.0000338632.00552.cb

    Article  PubMed  CAS  Google Scholar 

  7. Burn DJ, Rowan EN, Allan LM, Molloy S, O’Brien JT, McKeith IG (2006) Motor subtype and cognitive decline in Parkinson’s disease, Parkinson’s disease with dementia, and dementia with Lewy bodies. J Neurol Neurosurg Psychiatry 77:585–589. doi:10.1136/jnnp.2005.081711

    Article  PubMed  CAS  Google Scholar 

  8. Williams-Gray CH, Foltynie T, Brayne CEG, Robbins TW, Barker RA (2007) Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain 130:1787–1798. doi:10.1093/brain/awm111

    Article  PubMed  CAS  Google Scholar 

  9. Domellöf ME, Elgh E, Forsgren L (2011) The relation between cognition and motor dysfunction in drug-naïve newly diagnosed patients with Parkinson’s disease. Mov Disord 26:2183–2189. doi:10.1002/mds.23814

    Article  PubMed  Google Scholar 

  10. Amboni M, Barone P, Iuppariello L et al (2012) Gait patterns in parkinsonian patients with or without mild cognitive impairment. Mov Disord 27:1536–1543. doi:10.1002/mds.25165

    Article  PubMed  Google Scholar 

  11. Bäckman L, Nyberg L, Lindenberger U, Li S-C, Farde L (2006) The correlative triad among aging, dopamine, and cognition: current status and future prospects. Neurosci Biobehav R 30:791–807. doi:10.1016/j.neubiorev.2006.06.005

    Article  Google Scholar 

  12. Cools R (2006) Dopaminergic modulation of cognitive function-implications for L-DOPA treatment in Parkinson’s disease. Neurosci Biobehav R 30:1–23. doi:10.1016/j.neubiorev.2005.03.024

    Article  CAS  Google Scholar 

  13. Gothham AM, Brown RG, Marsden CD (1988) “Frontal” cognitive function in patients with Parkinson’s disease “on” and “of” levodopa. Brain 111:299–321. doi:10.1093/brain/111.2.299

    Article  Google Scholar 

  14. Brusa L, Bassi A, Stefani A, Pierantozzi M, Peppe A, Caramia MD, Boffa L, Ruggieri S, Stanzione P (2003) Pramipexole in comparison to l-dopa: a neuropsychological study. J Neural Transm 110:373–380. doi:10.1007/s00702-002-0811-7

    Article  PubMed  CAS  Google Scholar 

  15. Moustafa AA, Herzallah MM, Gluck MA (2013) Dissociating the cognitive effects of levodopa versus dopamine agonists in a neurocomputational model of learning in Parkinson’s disease. Neurodegener Diseas 11:102–111

    Article  CAS  Google Scholar 

  16. Beaulieu J-M, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217. doi:10.1124/pr.110.002642

    Article  PubMed  CAS  Google Scholar 

  17. Linder J, Stenlund H, Forsgren L (2010) Incidence of Parkinson’s disease and parkinsonism in northern Sweden: a population-based study. Mov Disord 25:341–348. doi:10.1002/mds.22987

    Article  PubMed  Google Scholar 

  18. Gilman S, Low P, Quinn N et al (1999) Consensus statement on the diagnosis of multiple system atrophy. J Neurol Sci 163:94–98. doi:10.1016/S0022-510X(98)00304-9

    Article  PubMed  CAS  Google Scholar 

  19. McKeith IG, Dickson DW, Lowe J et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB consortium. Neurology 65:1863–1872. doi:10.1212/01.wnl.0000187889.17253.b1

    Article  PubMed  CAS  Google Scholar 

  20. Montgomery SA, Asberg M (1979) A new depression scale designed to be sensitive to change. Brit J Psychiatry 134:382–389. doi:10.1192/bjp.134.4382

    Article  CAS  Google Scholar 

  21. Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE (2010) Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord 25:2649–2653. doi:10.1002/mds.23429

    Article  PubMed  Google Scholar 

  22. Fahn S, Elton RI (1987) Members of the UPDRS development committee. In: Fahn S, Calne DB, Goldstein M (eds) Recent development in Parkinson’s disease. Mcmillan Health Care Information, New York, pp 153–164

    Google Scholar 

  23. Louis ED, Cote L, Alfaro B, Mejia H, Marder KTMX (1999) Progression of parkinsonian signs in parkinson disease. Arch Neurol 56:334–337

    Article  PubMed  CAS  Google Scholar 

  24. Uc EY, McDermott MP, Marder KS, Anderson SW, Litvan I, Como PG, Auinger P, Chou KL, Growdon JC (2009) Incidence of and risk factors for cognitive impairment in an early Parkinson disease clinical trial cohort. Neurology 73:1469–1477. doi:10.1212/WNL.0b013e3181bf992f

    Article  PubMed  CAS  Google Scholar 

  25. Benedict RH, Zgaljardic DJ (1998) Practice effects during repeated administrations of memory tests with and without alternate forms. J Clin Exp Neuropsychol 20:339–352. doi:10.1076/jcen.20.3.339.822

    Article  PubMed  CAS  Google Scholar 

  26. Buschke H (1973) Selective reminding for analysis of memory and learning. J Verb Learn Verb Behav 12:543–550. doi:10.1016/S0022-5371(73)80034-9

    Article  Google Scholar 

  27. Benedict RHB, Schretlen D, Groninger L, Dobraski M, Shpritz B (1996) Revision of the brief visuospatial memory test: studies of normal performance, reliability and validity. Psychol Assess 8:145–153. doi:10.1037/1040-3590

    Article  Google Scholar 

  28. Wechsler D (1997) Wechsler Adult Intelligence Scale, 3rd edition (WAIS III): Test Manual, 3rd edn. Psychology, New York

    Google Scholar 

  29. Reitan RM (1958) Validity of the trail making test as an indicator of organic brain damage. Percept Motor Skill 8:271–276. doi:10.2466/PMS.8.7.271-276

    Google Scholar 

  30. Spreen O, Strauss E (1991) A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary, 3rd edn. Test 2nd. Oxford University Press, Oxford

    Google Scholar 

  31. Benton AL (1994) Contributions to neuropsychological assessment: a clinical manual. Oxford University Press, Oxford

    Google Scholar 

  32. Rothman KJ (1990) No adjustments are needed for multiple comparisons. Epidemiology 1:43–46

    Article  PubMed  CAS  Google Scholar 

  33. Bohnen NI, Kaufer DI, Hendrickson R, Ivanco LS, Lopresti BJ, Constantine GM, Mathis CA, Davis JG, Moore RY, Dekosky ST (2006) Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia. J Neurology 253:242–247. doi:10.1007/s00415-005-0971-0

    Article  CAS  Google Scholar 

  34. Helmich RC, De Lange FP, Bloem BR, Toni I (2007) Cerebral compensation during motor imagery in Parkinson’s disease. Neuropsychologia 45:2201–2215 10.1016/j.neuropsychologia.2007.02.024

    Article  PubMed  Google Scholar 

  35. Lewis GN, Byblow WD, Walt SE (2000) Stride length regulation in Parkinson’s disease: the use of extrinsic, visual cues. Brain 123:2077–2090. doi:10.1093/brain/123.10.2077

    Article  PubMed  Google Scholar 

  36. Cools R, D’Esposito M (2011) Inverted U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry 69:113–125

    Article  Google Scholar 

  37. Williams-Gray CH, Hampshire A, Robbins TW, Owen AM, Barker RA (2007) Catechol O-methyltransferase Val158Met genotype influences frontoparietal activity during planning in patients with Parkinson’s disease. J Neurosci 27:4832–4838. doi:10.1523/JNEUROSCI.0774-07.2007

    Article  PubMed  CAS  Google Scholar 

  38. Vingerhoets FJ, Schulzer M, Calne DB, Snow BJ (1997) Which clinical sign of Parkinson’s disease best reflects the nigrostriatal lesion? Ann Neurol 41:58–64. doi:10.1002/ana.410410111

    Article  PubMed  CAS  Google Scholar 

  39. Löber S, Hübner H, Tschammer N, Gmeiner P (2011) Recent advances in the search for D3- and D4-selective drugs: probes, models and candidates. Trends in Pharm Sci 32:148–157. doi:10.1016/j.tips.2010.12.003

    Article  Google Scholar 

  40. Lange KW, Robbins TW, Marsden CD, James M, Owen AM, Paul GM (1992) l-Dopa withdrawal in Parkinson’s disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction. Psychopharm 107:394–404. doi:10.1007/BF02245167

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from The Swedish Medical Research Council, The Parkinson Foundation in Sweden, The Swedish Association of Persons with Neurological Disabilities, Umeå University, Västerbotten County Council (ALF), King Gustaf V and Queen Victoria Freemason Foundation, the Swedish Brain Foundation and Lions Clubs Sweden’s Foundation for Research in Age-related Diseases.

Conflicts of interest

Magdalena Eriksson Domellöf reports no disclosures. Dr Eva Elgh reports no disclosures. Dr Lars Forsgren serves on scientific advisory boards for Pfizer and UCB; and receives research support from the Parkinson Foundation, King Gustaf V and Queen Victoria Freemason Foundation, the Kempe Foundation, Västerbotten County Council, Umeå University and the Swedish Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena E. Domellöf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domellöf, M.E., Forsgren, L. & Elgh, E. Persistence of associations between cognitive impairment and motor dysfunction in the early phase of Parkinson’s disease. J Neurol 260, 2228–2236 (2013). https://doi.org/10.1007/s00415-013-6971-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-013-6971-6

Keywords

Navigation