Skip to main content
Log in

Upper motor neuron involvement in amyotrophic lateral sclerosis evaluated by triple stimulation technique and diffusion tensor MRI

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the diagnostic value of triple stimulation technique (TST) and diffusion tensor imaging (DTI) tractography as markers of upper motor neuron (UMN) degeneration in amyotrophic lateral sclerosis (ALS). Fourteen ALS patients fulfilling the El Escorial criteria and 30 control subjects participated in the study. TST amplitude and area ratio were used as an estimate of the degree of central motor conduction failure. DTI fractional anisotropy was used as a quantitative measure of the structural integrity of the corticospinal tract and the posterior limb of the internal capsule. Mean TST amplitude and area ratio were lower in patients than controls, while there were no differences in mean fractional anisotropy of the corticospinal tract or the posterior limb of the internal capsule. TST was abnormal in 7/13 patients (sensitivity 54 %) and DTI was abnormal in 3/12 (sensitivity 25 %). Combining TST and DTI disclosed abnormalities in 8/11 patients (sensitivity 73 %). TST confirmed UMN degeneration in one of every 2.25 patient in the diagnostic categories lower than ‘probable’ ALS. Using results from TST as a criterion for UMN degeneration, four patients in diagnostic categories lower than ‘probable’ ALS and without clinical signs of UMN degeneration in the cervical region increased in diagnostic category. Our findings indicate that TST has a significant diagnostic value as an early objective marker of UMN degeneration in ALS, while the value of DTI analysis seems limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ADM:

Abductor digiti minimi muscle

AI:

Asymmetry index

ALS:

Amyotrophic lateral sclerosis

ALSFRS-R:

Revised amyotrophic lateral sclerosis functional rating scale

CMAP:

Compound muscle action potential

CMCT:

Central motor conduction time

CST:

Corticospinal tract

DTI:

Diffusion tensor imaging

DTR:

Deep tendon stretch reflex

EMG:

Electromyography

FA:

Fractional anisotropy

FACT:

Fiber assignment by continuous tracking

FEV(1):

Forced expiratory volume in the first second

FVC:

Forced vital capacity

ICBM:

International consortium for brain mapping

LMN:

Lower motor neuron

MD:

Mean diffusivity

MEP:

Motor evoked potential

MNI:

Montreal Neurological Institute

MR:

Magnetic resonance

MRC:

Medical research council

PLIC:

Posterior limb of internal capsule

ROI:

Region of interest

sd:

Standard deviation

TMS:

Transcranial magnetic stimulation

TST:

Triple stimulation technique

UMN:

Upper motor neuron

References

  1. Schriefer TN, Hess CW, Mills KR, Murray NM (1989) Central motor conduction studies in motor neurone disease using magnetic brain stimulation. Electroencephalogr Clin Neurophysiol 74:431–437

    Article  PubMed  CAS  Google Scholar 

  2. Eisen A, Shytbel W, Murphy K, Hoirch M (1990) Cortical magnetic stimulation in amyotrophic lateral sclerosis. Muscle Nerve 13:146–151

    Article  PubMed  CAS  Google Scholar 

  3. de Carvalho M, Turkman A, Swash M (2003) Motor responses evoked by transcranial magnetic stimulation and peripheral nerve stimulation in the ulnar innervation in amyotrophic lateral sclerosis: the effect of upper and lower motor neuron lesion. J Neurol Sci 210:83–90

    Article  PubMed  Google Scholar 

  4. Attarian S, Azulay JP, Lardillier D, Verschueren A, Pouget J (2005) Transcranial magnetic stimulation in lower motor neuron diseases. Clin Neurophysiol 116:35–42

    Article  PubMed  CAS  Google Scholar 

  5. Attarian S, Verschueren A, Pouget J (2007) Magnetic stimulation including the triple-stimulation technique in amyotrophic lateral sclerosis. Muscle Nerve 36:55–61

    Article  PubMed  Google Scholar 

  6. Mills KR (2003) The natural history of central motor abnormalities in amyotrophic lateral sclerosis. Brain 126:2558–2566

    Article  PubMed  CAS  Google Scholar 

  7. Brooks BR, Miller RG, Swash M, Munsat TL (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Motor Neuron Disord 1:293–299

    Article  CAS  Google Scholar 

  8. Komissarow L, Rollnik JD, Bogdanova D, Krampfl K, Khabirov FA, Kossev A, Dengler R, Bufler J (2004) Triple stimulation technique (TST) in amyotrophic lateral sclerosis. Clin Neurophysiol 115:356–360

    Article  PubMed  Google Scholar 

  9. Magistris MR, Rosler KM, Truffert A, Myers JP (1998) Transcranial stimulation excites virtually all motor neurons supplying the target muscle. A demonstration and a method improving the study of motor evoked potentials. Brain 121:437–450

    Article  PubMed  Google Scholar 

  10. Magistris MR, Rosler KM, Truffert A, Landis T, Hess CW (1999) A clinical study of motor evoked potentials using a triple stimulation technique. Brain 122:265–279

    Article  PubMed  Google Scholar 

  11. Rosler KM, Truffert A, Hess CW, Magistris MR (2000) Quantification of upper motor neuron loss in amyotrophic lateral sclerosis. Clin Neurophysiol 111:2208–2218

    Article  PubMed  CAS  Google Scholar 

  12. Kleine BU, Schelhaas HJ, van Elswijk G, de Rijk MC, Stegeman DF, Zwarts MJ (2010) Prospective, blind study of the triple stimulation technique in the diagnosis of ALS. Amyotroph Lateral Scler 11:67–75

    Article  PubMed  Google Scholar 

  13. Agosta F, Pagani E, Petrolini M, Caputo D, Perini M, Prelle A, Salvi F, Filippi M (2010) Assessment of white matter tract damage in patients with amyotrophic lateral sclerosis: a diffusion tensor MR imaging tractography study. AJNR Am J Neuroradiol 31:1457–1461

    Article  PubMed  CAS  Google Scholar 

  14. Cosottini M, Giannelli M, Vannozzi F, Pesaresi I, Piazza S, Belmonte G, Siciliano G (2010) Evaluation of corticospinal tract impairment in the brain of patients with amyotrophic lateral sclerosis by using diffusion tensor imaging acquisition schemes with different numbers of diffusion-weighting directions. J Comput Assist Tomogr 34:746–750

    Article  PubMed  Google Scholar 

  15. Ellis CM, Simmons A, Jones DK, Bland J, Dawson JM, Horsfield MA, Williams SC, Leigh PN (1999) Diffusion tensor MRI assesses corticospinal tract damage in ALS. Neurology 53:1051–1058

    Article  PubMed  CAS  Google Scholar 

  16. Iwata NK, Aoki S, Okabe S, Arai N, Terao Y, Kwak S, Abe O, Kanazawa I, Tsuji S, Ugawa Y (2008) Evaluation of corticospinal tracts in ALS with diffusion tensor MRI and brainstem stimulation. Neurology 70:528–532

    Article  PubMed  CAS  Google Scholar 

  17. Sage CA, Peeters RR, Gorner A, Robberecht W, Sunaert S (2007) Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis. Neuroimage 34:486–499

    Article  PubMed  Google Scholar 

  18. Senda J, Ito M, Watanabe H, Atsuta N, Kawai Y, Katsuno M, Tanaka F, Naganawa S, Fukatsu H, Sobue G (2009) Correlation between pyramidal tract degeneration and widespread white matter involvement in amyotrophic lateral sclerosis: a study with tractography and diffusion-tensor imaging. Amyotroph Lateral Scler 10:288–294

    Article  PubMed  Google Scholar 

  19. Iwata NK, Aoki S, Masutani Y, Yoshida J, Okabe S, Arai N, Terao Y, Kwak S, Tsuji S, Ugawa Y (2005) Corticospinal tract and corticobulbar tract dysfunction in ALS: combined study using transcranial magnetic stimulation and diffusion tensor tractography. Int Congr Ser 1278:181–184

    Article  Google Scholar 

  20. Sach M, Winkler G, Glauche V, Liepert J, Heimbach B, Koch MA, Buchel C, Weiller C (2004) Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis. Brain 127:340–350

    Article  PubMed  Google Scholar 

  21. Brooks BR (1994) El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial “Clinical limits of amyotrophic lateral sclerosis” workshop contributors. J Neurol Sci 124(96–107):96–107

    Article  PubMed  Google Scholar 

  22. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, Moher D, Rennie D, de Vet HC, Lijmer JG (2003) The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Clin Chem 49:7–18

    Article  PubMed  CAS  Google Scholar 

  23. Mioshi E, Lillo P, Kiernan M, Hodges J (2012) Activities of daily living in motor neuron disease: role of behavioural and motor changes. J Clin Neurosci 19:552–556

    Article  PubMed  CAS  Google Scholar 

  24. Roth G, Magistris MR (1987) Detection of conduction block by monopolar percutaneous stimulation of the brachial plexus. Electromyogr Clin Neurophysiol 27:45–53

    PubMed  CAS  Google Scholar 

  25. Moller M, Frandsen J, Andersen G, Gjedde A, Vestergaard-Poulsen P, Ostergaard L (2007) Dynamic changes in corticospinal tracts after stroke detected by fibretracking. J Neurol Neurosurg Psychiatry 78:587–592

    Article  PubMed  CAS  Google Scholar 

  26. Dalby RB, Frandsen J, Chakravarty MM, Ahdidan J, Sorensen L, Rosenberg R, Videbech P, Ostergaard L (2010) Depression severity is correlated to the integrity of white matter fiber tracts in late-onset major depression. Psychiatry Res 184:38–48

    Article  PubMed  Google Scholar 

  27. Grabner G, Janke AL, Budge MM, Smith D, Pruessner J, Collins DL (2006) Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. Med Image Comput Comput Assist Interv 9:58–66

    PubMed  Google Scholar 

  28. Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, Woods R, Paus T, Simpson G, Pike B, Holmes C, Collins L, Thompson P, MacDonald D, Iacoboni M, Schormann T, Amunts K, Palomero-Gallagher N, Geyer S, Parsons L, Narr K, Kabani N, Le GG, Boomsma D, Cannon T, Kawashima R, Mazoyer B (2001) A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM). Philos Trans R Soc Lond B Biol Sci 356:1293–1322

    Article  PubMed  CAS  Google Scholar 

  29. Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18:192–205

    Article  PubMed  CAS  Google Scholar 

  30. Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269

    Article  PubMed  CAS  Google Scholar 

  31. Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies—a technical review. NMR Biomed 15:468–480

    Article  PubMed  Google Scholar 

  32. Galantucci S, Tartaglia MC, Wilson SM, Henry ML, Filippi M, Agosta F, Dronkers NF, Henry RG, Ogar JM, Miller BL, Gorno-Tempini ML (2011) White matter damage in primary progressive aphasias: a diffusion tensor tractography study. Brain 134:3011–3029

    Article  PubMed  Google Scholar 

  33. Wong JC, Concha L, Beaulieu C, Johnston W, Allen PS, Kalra S (2007) Spatial profiling of the corticospinal tract in amyotrophic lateral sclerosis using diffusion tensor imaging. J Neuroimaging 17:234–240

    Article  PubMed  Google Scholar 

  34. Cook C, Roman M, Stewart KM, Leithe LG, Isaacs R (2009) Reliability and diagnostic accuracy of clinical special tests for myelopathy in patients seen for cervical dysfunction. J Orthop Sports Phys Ther 39:172–178

    PubMed  Google Scholar 

  35. Miller TM, Johnston SC (2005) Should the Babinski sign be part of the routine neurologic examination? Neurology 65:1165–1168

    Article  PubMed  Google Scholar 

  36. Mills KR, Nithi KA (1998) Peripheral and central motor conduction in amyotrophic lateral sclerosis. J Neurol Sci 159:82–87

    Article  PubMed  CAS  Google Scholar 

  37. Buhler R, Magistris MR, Truffert A, Hess CW, Rosler KM (2001) The triple stimulation technique to study central motor conduction to the lower limbs. Clin Neurophysiol 112:938–949

    Article  PubMed  CAS  Google Scholar 

  38. Pyra T, Hui B, Hanstock C, Concha L, Wong JC, Beaulieu C, Johnston W, Kalra S (2010) Combined structural and neurochemical evaluation of the corticospinal tract in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 11:157–165

    Article  PubMed  CAS  Google Scholar 

  39. Foerster BR, Dwamena BA, Petrou M, Carlos RC, Callaghan BC, Pomper MG (2012) Diagnostic accuracy using diffusion tensor imaging in the diagnosis of ALS: a meta-analysis. Acad Radiol 19:1075–1086

    Article  PubMed  Google Scholar 

  40. Kloppel S, Baumer T, Kroeger J, Koch MA, Buchel C, Munchau A, Siebner HR (2008) The cortical motor threshold reflects microstructural properties of cerebral white matter. Neuroimage 40:1782–1791

    Article  PubMed  Google Scholar 

  41. Hubers A, Klein JC, Kang JS, Hilker R, Ziemann U (2011) The relationship between TMS measures of functional properties and DTI measures of microstructure of the corticospinal tract. Brain Stimul 5:297–304

    Article  PubMed  Google Scholar 

  42. Ziemann U, Rothwell JC (2000) I-waves in motor cortex. J Clin Neurophysiol 17:397–405

    Article  PubMed  CAS  Google Scholar 

  43. Ziemann U, Tergau F, Wassermann EM, Wischer S, Hildebrandt J, Paulus W (1998) Demonstration of facilitatory I wave interaction in the human motor cortex by paired transcranial magnetic stimulation. J Physiol 511(Pt 1):181–190

    Article  PubMed  CAS  Google Scholar 

  44. Patton HD, Amassian VE (1954) Single and multiple-unit analysis of cortical stage of pyramidal tract activation. J Neurophysiol 17:345–363

    PubMed  CAS  Google Scholar 

  45. Hugon J, Lubeau M, Tabaraud F, Chazot F, Vallat JM, Dumas M (1987) Central motor conduction in motor neuron disease. Ann Neurol 22:544–546

    Article  PubMed  CAS  Google Scholar 

  46. Ingram DA, Swash M (1987) Central motor conduction is abnormal in motor neuron disease. J Neurol Neurosurg Psychiatry 50:159–166

    Article  PubMed  CAS  Google Scholar 

  47. Schulte-Mattler WJ, Muller T, Zierz S (1999) Transcranial magnetic stimulation compared with upper motor neuron signs in patients with amyotrophic lateral sclerosis. J Neurol Sci 170:51–56

    Article  PubMed  CAS  Google Scholar 

  48. Kang X, Herron TJ, Woods DL (2011) Regional variation, hemispheric asymmetries and gender differences in pericortical white matter. Neuroimage 56:2011–2023

    Article  PubMed  Google Scholar 

  49. Hammond G (2002) Correlates of human handedness in primary motor cortex: a review and hypothesis. Neurosci Biobehav Rev 26:285–292

    Article  PubMed  Google Scholar 

  50. Buchel C, Raedler T, Sommer M, Sach M, Weiller C, Koch MA (2004) White matter asymmetry in the human brain: a diffusion tensor MRI study. Cereb Cortex 14:945–951

    Article  PubMed  CAS  Google Scholar 

  51. Peled S, Gudbjartsson H, Westin CF, Kikinis R, Jolesz FA (1998) Magnetic resonance imaging shows orientation and asymmetry of white matter fiber tracts. Brain Res 780:27–33

    Article  PubMed  CAS  Google Scholar 

  52. Westerhausen R, Huster RJ, Kreuder F, Wittling W, Schweiger E (2007) Corticospinal tract asymmetries at the level of the internal capsule: is there an association with handedness? Neuroimage 37:379–386

    Article  PubMed  Google Scholar 

  53. Wang S, Poptani H, Bilello M, Wu X, Woo JH, Elman LB, McCluskey LF, Krejza J, Melhem ER (2006) Diffusion tensor imaging in amyotrophic lateral sclerosis: volumetric analysis of the corticospinal tract. AJNR Am J Neuroradiol 27:1234–1238

    PubMed  CAS  Google Scholar 

  54. Furutani K, Harada M, Minato M, Morita N, Nishitani H (2005) Regional changes of fractional anisotropy with normal aging using statistical parametric mapping (SPM). J Med Invest 52:186–190

    Article  PubMed  Google Scholar 

  55. Nusbaum AO, Tang CY, Buchsbaum MS, Wei TC, Atlas SW (2001) Regional and global changes in cerebral diffusion with normal aging. AJNR Am J Neuroradiol 22:136–142

    PubMed  CAS  Google Scholar 

  56. Pfefferbaum A, Adalsteinsson E, Sullivan EV (2005) Frontal circuitry degradation marks healthy adult aging: evidence from diffusion tensor imaging. Neuroimage 26:891–899

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Lundbeck Foundation [R32-A2774]; the Danish Agency for Science, Technology and Innovation (founded by Danish Ministry of Science, Technology and Innovation) [271-06-0202] and Dagmar Marshalls Fond [5413455170]. These bodies had no role in the study design, implementation or manuscript preparation. The authors thank Per Christian Sidenius, MD and Bodil Holch Povlsen (Department of Neurology, Aarhus University) for their assistance with admission of patients, and research radiographers Dora Zeidler and Michael Geneser for their assistance with MRI recordings. We also thank following participants for patient inclusion: Carsten Bisgaard, MD (Neurology Department, Vejle Hospital); Mette-Kirstine Christensen, MD, PhD (Neurology Department, Aalborg Hospital, Aarhus University); Jens Arentsen, MD (Neurology Department, Holstebro Hospital). The authors thank all patients and control subjects who participated in the study.

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasna Furtula.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furtula, J., Johnsen, B., Frandsen, J. et al. Upper motor neuron involvement in amyotrophic lateral sclerosis evaluated by triple stimulation technique and diffusion tensor MRI. J Neurol 260, 1535–1544 (2013). https://doi.org/10.1007/s00415-012-6824-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-012-6824-8

Keywords

Navigation