Abstract
Potassium (K+) channels are encoded by approximately 80 genes in mammals. They are expressed in many tissues and have diverse physiological roles. Human K+ channels are divided mainly into calcium (Ca2+)-activated (KCa), inward-rectifying (KIR), two-pore (K2P), and voltage-gated (Kv) channels. The Kv channels form the largest family, with approximately 40 genes. Owing to their involvement in many diseases and their specific expression patterns and physiological roles, K+ channels present an attractive target for the development of new therapies. This review summarizes the physiological and pathophysiological roles of various potassium channels with respect to their therapeutic potential for disorders with a disturbed neuronal excitability such as epilepsy, migraine, neuropathic pain, or stroke.
This is a preview of subscription content, access via your institution.


References
Coetzee WA, Amarillo Y, Chiu J, Chow A, Lau D, McCormack T, Moreno H, Nadal MS, Ozaita A, Pountney D, Saganich M, de Vega-Saenz ME, Rudy B (1999) Molecular diversity of K+ channels. Ann N Y Acad Sci 868:233–285
Doyle DA, Morais CJ, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77
Long SB, Campbell EB, MacKinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903
Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stuhmer W, Wang X (2005) International Union of Pharmacology LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev 57:473–508
Shieh CC, Coghlan M, Sullivan JP, Gopalakrishnan M (2000) Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev 52:557–594
Sharman JL, Mpamhanga CP, Spedding M, Germain P, Staels B, Dacquet C, Laudet V, Harmar AJ (2011) IUPHAR-DB: new receptors and tools for easy searching and visualization of pharmacological data. Nucleic Acids Res 39:D534–D538
Adelman JP, Clapham DE, Hibino H, Inanobe A, Jan LY, Karschin A, Kubo Y, Kurachi Y, Lazdunski M, Miki T, Nichols CG, Pearson WL, Seino S, Vandenberg CA (2011) IUPHAR database (IUPHAR-DB): inwardly rectifying potassium channels
Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90:291–366
Kubo Y, Adelman JP, Clapham DE, Jan LY, Karschin A, Kurachi Y, Lazdunski M, Nichols CG, Seino S, Vandenberg CA (2005) International Union of Pharmacology LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels. Pharmacol Rev 57:509–526
Goldstein SA, Bayliss DA, Kim D, Lesage F, Plant LD, Rajan S (2005) International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels. Pharmacol Rev 57:527–540
Plant LD, Bayliss DA, Kim D, Lesage F, Goldstein SAN (2012) Two-P potassium channels. IUPHAR database. http://www.iuphar-dp.org/DATABASE/FamilyMenuForward?familyId=79
Piechotta PL, Rapedius M, Stansfeld PJ, Bollepalli MK, Erhlich G, Andres-Enguix I, Fritzenschaft H, Decher N, Sansom MS, Tucker SJ, Baukrowitz T (2011) The pore structure and gating mechanism of K2P channels. EMBO J 30:3607–3619
Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H (2005) International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol Rev 57:463–472
Vacher H, Mohapatra DP, Trimmer JS (2008) Localization and targeting of voltage-dependent ion channels in mammalian central neurons. Physiol Rev 88:1407–1447
Maljevic S, Wuttke TV, Lerche H (2008) Nervous system KV7 disorders: breakdown of a subthreshold brake. J Physiol 586:1791–1801
Martire M, Castaldo P, D’Amico M, Preziosi P, Annunziato L, Taglialatela M (2004) M channels containing KCNQ2 subunits modulate norepinephrine, aspartate, and GABA release from hippocampal nerve terminals. J Neurosci 24:592–597
Peretz A, Sheinin A, Yue C, Gani-Katzav N, Gibor G, Nachman R, Gopin A, Tam E, Shabat D, Yaari Y, Attali B (2007) Pre- and postsynaptic activation of M-channels by a novel opener dampens neuronal firing and transmitter release. J Neurophysiol 97:283–295
Jensen CS, Rasmussen HB, Misonou H (2011) Neuronal trafficking of voltage-gated potassium channels. Mol Cell Neurosci 48:288–297
Misonou H, Trimmer JS (2004) Determinants of voltage-gated potassium channel surface expression and localization in mammalian neurons. Crit Rev Biochem Mol Biol 39:125–145
Vincent A (2010) Autoimmune channelopathies: well-established and emerging immunotherapy-responsive diseases of the peripheral and central nervous systems. J Clin Immunol 30(Suppl 1):S97–S102
Lehmann-Horn F, Jurkat-Rott K (1999) Voltage-gated ion channels and hereditary disease. Physiol Rev 79:1317–1372
Brandt T, Strupp M (1997) Episodic ataxia type 1 and 2 (familial periodic ataxia/vertigo). Audiol Neurootol 2:373–383
Browne DL, Gancher ST, Nutt JG, Brunt ER, Smith EA, Kramer P, Litt M (1994) Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat Genet 8:136–140
Rajakulendran S, Schorge S, Kullmann DM, Hanna MG (2007) Episodic ataxia type 1: a neuronal potassium channelopathy. Neurotherapeutics 4:258–266
Zuberi SM, Eunson LH, Spauschus A, De SR, Tolmie J, Wood NW, McWilliam RC, Stephenson JB, Kullmann DM, Hanna MG (1999) A novel mutation in the human voltage-gated potassium channel gene (Kv1.1) associates with episodic ataxia type 1 and sometimes with partial epilepsy. Brain 122(Pt 5):817–825
Glaudemans B, van der Wijst J, Scola RH, Lorenzoni PJ, Heister A, van der Kemp AW, Knoers NV, Hoenderop JG, Bindels RJ (2009) A missense mutation in the Kv1.1 voltage-gated potassium channel-encoding gene KCNA1 is linked to human autosomal dominant hypomagnesemia. J Clin Invest 119:936–942
Jentsch TJ (2000) Neuronal KCNQ potassium channels: physiology and role in disease. Nat Rev Neurosci 1:21–30
Maljevic S, Wuttke TV, Seebohm G, Lerche H (2010) Kv7 channelopathies. Pflugers Arch 460:277–288
Hansen HH, Waroux O, Seutin V, Jentsch TJ, Aznar S, Mikkelsen JD (2008) Kv7 channels: interaction with dopaminergic and serotonergic neurotransmission in the CNS. J Physiol 586:1823–1832
Brown DA, Adams PR (1980) Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 283:673–676
Brown DA, Passmore GM (2009) Neural KCNQ (Kv7) channels. Br J Pharmacol 156:1185–1195
Rogawski MA (2000) KCNQ2/KCNQ3 K+ channels and the molecular pathogenesis of epilepsy: implications for therapy. Trends Neurosci 23:393–398
Gu N, Vervaeke K, Hu H, Storm JF (2005) Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells. J Physiol 566:689–715
Biervert C, Schroeder BC, Kubisch C, Berkovic SF, Propping P, Jentsch TJ, Steinlein OK (1998) A potassium channel mutation in neonatal human epilepsy. Science 279:403–406
Charlier C, Singh NA, Ryan SG, Lewis TB, Reus BE, Leach RJ, Leppert M (1998) A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet 18:53–55
Singh NA, Charlier C, Stauffer D, DuPont BR, Leach RJ, Melis R, Ronen GM, Bjerre I, Quattlebaum T, Murphy JV, McHarg ML, Gagnon D, Rosales TO, Peiffer A, Anderson VE, Leppert M (1998) A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet 18:25–29
Weckhuysen S, Mandelstam S, Suls A, Audenaert D, Deconinck T, Claes LR, Deprez L, Smets K, Hristova D, Yordanova I, Jordanova A, Ceulemans B, Jansen A, Hasaerts D, Roelens F, Lagae L, Yendle S, Stanley T, Heron SE, Mulley JC, Berkovic SF, Scheffer IE, de Jonghe P (2012) KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol 71:15–25
Dedek K, Kunath B, Kananura C, Reuner U, Jentsch TJ, Steinlein OK (2001) Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel. Proc Natl Acad Sci USA 98:12272–12277
Castaldo P, del Giudice EM, Coppola G, Pascotto A, Annunziato L, Taglialatela M (2002) Benign familial neonatal convulsions caused by altered gating of KCNQ2/KCNQ3 potassium channels. J Neurosci 22:RC 199
Hunter J, Maljevic S, Shankar A, Siegel A, Weissman B, Holt P, Olson L, Lerche H, Escayg A (2006) Subthreshold changes of voltage-dependent activation of the K(V)7.2 channel in neonatal epilepsy. Neurobiol Dis 24:194–201
Wuttke TV, Penzien J, Fauler M, Seebohm G, Lehmann-Horn F, Lerche H, Jurkat-Rott K (2008) Neutralization of a negative charge in the S1–S2 region of the KV7.2 (KCNQ2) channel affects voltage-dependent activation in neonatal epilepsy. J Physiol 586:545–555
Wuttke TV, Jurkat-Rott K, Paulus W, Garncarek M, Lehmann-Horn F, Lerche H (2007) Peripheral nerve hyperexcitability due to dominant-negative KCNQ2 mutations. Neurology 69:2045–2053
Coppola G, Castaldo P, del Miraglia GE, Bellini G, Galasso F, Soldovieri MV, Anzalone L, Sferro C, Annunziato L, Pascotto A, Taglialatela M (2003) A novel KCNQ2 K+ channel mutation in benign neonatal convulsions and centrotemporal spikes. Neurology 61:131–134
Neubauer BA, Waldegger S, Heinzinger J, Hahn A, Kurlemann G, Fiedler B, Eberhard F, Muhle H, Stephani U, Garkisch S, Eeg-Olofsson O, Muller U, Sander T (2008) KCNQ2 and KCNQ3 mutations contribute to different idiopathic epilepsy syndromes. Neurology 71:177–183
Guerrini R (2001) Idiopathic epilepsy and paroxysmal dyskinesia. Epilepsia 42(Suppl 3):36–41
Guerrini R, Sanchez-Carpintero R, Deonna T, Santucci M, Bhatia KP, Moreno T, Parmeggiani L, Bernardina BD (2002) Early-onset absence epilepsy and paroxysmal dyskinesia. Epilepsia 43:1224–1229
Du W, Bautista JF, Yang H, Diez-Sampedro A, You SA, Wang L, Kotagal P, Luders HO, Shi J, Cui J, Richerson GB, Wang QK (2005) Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet 37:733–738
Bernard C, Anderson A, Becker A, Poolos NP, Beck H, Johnston D (2004) Acquired dendritic channelopathy in temporal lobe epilepsy. Science 305:532–535
Huang Q, Bu S, Yu Y, Guo Z, Ghatnekar G, Bu M, Yang L, Lu B, Feng Z, Liu S, Wang F (2007) Diazoxide prevents diabetes through inhibiting pancreatic beta-cells from apoptosis via Bcl-2/Bax rate and p38-beta mitogen-activated protein kinase. Endocrinology 148:81–91
Mannhold R (2004) KATP channel openers: structure-activity relationships and therapeutic potential. Med Res Rev 24:213–266
Ogilvie RI, Nadeau JH, Sitar DS (1982) Diazoxide concentration-response relation in hypertension. Hypertension 4:167–173
Simpson D, Wellington K (2004) Nicorandil: a review of its use in the management of stable angina pectoris, including high-risk patients. Drugs 64:1941–1955
Camerino DC, Tricarico D, Desaphy JF (2007) Ion channel pharmacology. Neurotherapeutics 4:184–198
Mathie A, Veale EL (2007) Therapeutic potential of neuronal two-pore domain potassium-channel modulators. Curr Opin Investig Drugs 8:555–562
Wang Y, Yang PL, Tang JF, Lin JF, Cai XH, Wang XT, Zheng GQ (2008) Potassium channels: possible new therapeutic targets in Parkinson’s disease. Med Hypotheses 71:546–550
Wulff H, Kolski-Andreaco A, Sankaranarayanan A, Sabatier JM, Shakkottai V (2007) Modulators of small- and intermediate-conductance calcium-activated potassium channels and their therapeutic indications. Curr Med Chem 14:1437–1457
Icagen I (2009) Icagen reports top-line results of phase IIa study of senicapoc in exercise-induced asthma (26 Oct 2009, press release)
Nagalla S, Ballas SK (2012) Drugs for preventing red blood cell dehydration in people with sickle cell disease. Cochrane Database Syst Rev 7:CD 003426
Chiang HT, Wu SN (2001) Inhibition of large-conductance calcium-activated potassium channel by 2-methoxyestradiol in cultured vascular endothelial (HUV-EC-C) cells. J Membr Biol 182:203–212
Huang CW, Huang CC, Wu SN (2007) Activation by zonisamide, a newer antiepileptic drug, of large-conductance calcium-activated potassium channel in differentiated hippocampal neuron-derived H19–7 cells. J Pharmacol Exp Ther 321:98–106
Korovkina VP, Brainard AM, Ismail P, Schmidt TJ, England SK (2004) Estradiol binding to maxi-K channels induces their down-regulation via proteasomal degradation. J Biol Chem 279:1217–1223
Nardi A, Olesen SP (2008) BK channel modulators: a comprehensive overview. Curr Med Chem 15:1126–1146
Wu SN, Liu SI, Huang MH (2004) Cilostazol, an inhibitor of type 3 phosphodiesterase, stimulates large-conductance, calcium-activated potassium channels in pituitary GH3 cells and pheochromocytoma PC12 cells. Endocrinology 145:1175–1184
Yang B, Desai R, Kaczmarek LK (2007) Slack and slick K(Na) channels regulate the accuracy of timing of auditory neurons. J Neurosci 27:2617–2627
Brown MR, Kronengold J, Gazula VR, Chen Y, Strumbos JG, Sigworth FJ, Navaratnam D, Kaczmarek LK (2010) Fragile X mental retardation protein controls gating of the sodium-activated potassium channel slack. Nat Neurosci 13:819–821
Santi CM, Martinez-Lopez P, de la Vega-Beltran JL, Butler A, Alisio A, Darszon A, Salkoff L (2010) The SLO3 sperm-specific potassium channel plays a vital role in male fertility. FEBS Lett 584:1041–1046
Wulff H, Castle NA, Pardo LA (2009) Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov 8:982–1001
Wuttke TV, Lerche H (2006) Novel anticonvulsant drugs targeting voltage-dependent ion channels. Exp Opin Investig Drugs 15:1167–1177
Dunn J, Blight A (2011) Dalfampridine: a brief review of its mechanism of action and efficacy as a treatment to improve walking in patients with multiple sclerosis. Curr Med Res Opin 27:1415–1423
Goodman AD, Brown TR, Edwards KR, Krupp LB, Schapiro RT, Cohen R, Marinucci LN, Blight AR (2010) A phase 3 trial of extended release oral dalfampridine in multiple sclerosis. Ann Neurol 68:494–502
Strupp M, Kalla R, Claassen J, Adrion C, Mansmann U, Klopstock T, Freilinger T, Neugebauer H, Spiegel R, Dichgans M, Lehmann-Horn F, Jurkat-Rott K, Brandt T, Jen JC, Jahn K (2011) A randomized trial of 4-aminopyridine in EA2 and related familial episodic ataxias. Neurology 77:269–275
Keogh M, Sedehizadeh S, Maddison P (2011) Treatment for Lambert-Eaton myasthenic syndrome. Cochrane Database Syst Rev 2:CD 003279
Tatulian L, Delmas P, Abogadie FC, Brown DA (2001) Activation of expressed KCNQ potassium currents and native neuronal M-type potassium currents by the anti-convulsant drug retigabine. J Neurosci 21:5535–5545
Lange W, Geissendorfer J, Schenzer A, Grotzinger J, Seebohm G, Friedrich T, Schwake M (2009) Refinement of the binding site and mode of action of the anticonvulsant retigabine on KCNQ K+ channels. Mol Pharmacol 75:272–280
Schenzer A, Friedrich T, Pusch M, Saftig P, Jentsch TJ, Grotzinger J, Schwake M (2005) Molecular determinants of KCNQ (Kv7) K+ channel sensitivity to the anticonvulsant retigabine. J Neurosci 25:5051–5060
Wuttke TV, Seebohm G, Bail S, Maljevic S, Lerche H (2005) The new anticonvulsant retigabine favors voltage-dependent opening of the Kv7.2 (KCNQ2) channel by binding to its activation gate. Mol Pharmacol 67:1009–1017
Main MJ, Cryan JE, Dupere JR, Cox B, Clare JJ, Burbidge SA (2000) Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine. Mol Pharmacol 58:253–262
Otto JF, Kimball MM, Wilcox KS (2002) Effects of the anticonvulsant retigabine on cultured cortical neurons: changes in electroresponsive properties and synaptic transmission. Mol Pharmacol 61:921–927
Yue C, Yaari Y (2004) KCNQ/M channels control spike after depolarization and burst generation in hippocampal neurons. J Neurosci 24:4614–4624
Large CH, Sokal DM, Nehlig A, Gunthorpe MJ, Sankar R, Crean CS, VanLandingham KE, White HS (2012) The spectrum of anticonvulsant efficacy of retigabine (ezogabine) in animal models: implications for clinical use. Epilepsia 53(3):425–436
Porter RJ, Nohria V, Rundfeldt C (2007) Retigabine. Neurotherapeutics 4:149–154
Brodie MJ, Lerche H, Gil-Nagel A, Elger CE, Hall S, Shin P, Nohria V, Mansbach H; Restore 2 study group (2010) Efficacy and safety of adjunctive ezogabine (retigabine) in refractory partial epilepsy. Neurology 75:1817–1824
French JA, Mansbach H, Shin P (2011) Retigabine 1200 mg/day as adjunctive therapy in adults with refractory partial-onset seizures. In: 13th Congress of the European Federation of Neurological Sciences (EFNS), Florence, Italy, 2009 (p 472)
Porter RJ, Partiot A, Sachdeo R, Nohria V, Alves WM (2007) Randomized, multicenter, dose-ranging trial of retigabine for partial-onset seizures. Neurology 68:1197–1204
Hetherington SH, Biton V, Rigdon GC, Moore EL, Wargin M (2009) A multiple, ascending-dose study of ICA-105665 in patients with epilepsy. Epilepsia 50(Suppl 11):115 (1.234)
Rigdon GC, Hetherington SH, Moore EL, Allison MJ, Wargin M (2009) ICA-105665-02: multiple, ascending dose study: healthy volunteers. Epilepsia 50(Suppl 11):115 (1.233)
Risner ME, Rigdon GC, Moore EL, Allison MJ, Wargin M, Hetherington SH (2009) A single ascending dose study of ICA-105665 in healthy volunteers. Epilepsia 50(Suppl 11):112 (1.228)
Peretz A, Degani N, Nachman R, Uziyel Y, Gibor G, Shabat D, Attali B (2005) Meclofenamic acid and diclofenac, novel templates of KCNQ2/Q3 potassium channel openers, depress cortical neuron activity and exhibit anticonvulsant properties. Mol Pharmacol 67:1053–1066
Peretz A, Pell L, Gofman Y, Haitin Y, Shamgar L, Patrich E, Kornilov P, Gourgy-Hacohen O, Ben-Tal N, Attali B (2010) Targeting the voltage sensor of Kv7.2 voltage-gated K+ channels with a new gating-modifier. Proc Natl Acad Sci USA 107:15637–15642
Acknowledgments
The authors developed the manuscript outline, performed the literature analysis, and take full responsibility for the content of the paper. They thank GlaxoSmithKline and Valeant Pharmaceuticals International for technical review of the manuscript. They thank Dana Fox, PhD, CMPP (Caudex Medical Inc., New York, NY; supported by Valeant Pharmaceuticals International and GlaxoSmithKline) for assistance in preparing the manuscript and figures, and collating the comments of authors and other contributors.
Conflicts of interest
HL has served on the scientific advisory boards for Eisai, GSK, Pfizer, UCB and Valeant Pharmaceuticals International; has received industry-funded travel costs from GSK, Pfizer, and UCB; has received honoraria for speaking engagement of educational activities from Desitin, Eisai, GSK, Pfizer and UCB; and has received research support from UCB and Sanofi-Aventis. SM has no conflicts of interests.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Maljevic, S., Lerche, H. Potassium channels: a review of broadening therapeutic possibilities for neurological diseases. J Neurol 260, 2201–2211 (2013). https://doi.org/10.1007/s00415-012-6727-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00415-012-6727-8
Keywords
- Ion channel disorder
- Epilepsy
- Pain
- Antiepileptic drugs
- Potassium channel