Skip to main content

Potassium channels: a review of broadening therapeutic possibilities for neurological diseases

Abstract

Potassium (K+) channels are encoded by approximately 80 genes in mammals. They are expressed in many tissues and have diverse physiological roles. Human K+ channels are divided mainly into calcium (Ca2+)-activated (KCa), inward-rectifying (KIR), two-pore (K2P), and voltage-gated (Kv) channels. The Kv channels form the largest family, with approximately 40 genes. Owing to their involvement in many diseases and their specific expression patterns and physiological roles, K+ channels present an attractive target for the development of new therapies. This review summarizes the physiological and pathophysiological roles of various potassium channels with respect to their therapeutic potential for disorders with a disturbed neuronal excitability such as epilepsy, migraine, neuropathic pain, or stroke.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Coetzee WA, Amarillo Y, Chiu J, Chow A, Lau D, McCormack T, Moreno H, Nadal MS, Ozaita A, Pountney D, Saganich M, de Vega-Saenz ME, Rudy B (1999) Molecular diversity of K+ channels. Ann N Y Acad Sci 868:233–285

    Article  PubMed  CAS  Google Scholar 

  2. Doyle DA, Morais CJ, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  PubMed  CAS  Google Scholar 

  3. Long SB, Campbell EB, MacKinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903

    Article  PubMed  CAS  Google Scholar 

  4. Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stuhmer W, Wang X (2005) International Union of Pharmacology LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev 57:473–508

    Article  PubMed  CAS  Google Scholar 

  5. Shieh CC, Coghlan M, Sullivan JP, Gopalakrishnan M (2000) Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev 52:557–594

    PubMed  CAS  Google Scholar 

  6. Sharman JL, Mpamhanga CP, Spedding M, Germain P, Staels B, Dacquet C, Laudet V, Harmar AJ (2011) IUPHAR-DB: new receptors and tools for easy searching and visualization of pharmacological data. Nucleic Acids Res 39:D534–D538

    Article  PubMed  CAS  Google Scholar 

  7. Adelman JP, Clapham DE, Hibino H, Inanobe A, Jan LY, Karschin A, Kubo Y, Kurachi Y, Lazdunski M, Miki T, Nichols CG, Pearson WL, Seino S, Vandenberg CA (2011) IUPHAR database (IUPHAR-DB): inwardly rectifying potassium channels

  8. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90:291–366

    Article  PubMed  CAS  Google Scholar 

  9. Kubo Y, Adelman JP, Clapham DE, Jan LY, Karschin A, Kurachi Y, Lazdunski M, Nichols CG, Seino S, Vandenberg CA (2005) International Union of Pharmacology LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels. Pharmacol Rev 57:509–526

    Article  PubMed  CAS  Google Scholar 

  10. Goldstein SA, Bayliss DA, Kim D, Lesage F, Plant LD, Rajan S (2005) International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels. Pharmacol Rev 57:527–540

    Article  PubMed  CAS  Google Scholar 

  11. Plant LD, Bayliss DA, Kim D, Lesage F, Goldstein SAN (2012) Two-P potassium channels. IUPHAR database. http://www.iuphar-dp.org/DATABASE/FamilyMenuForward?familyId=79

  12. Piechotta PL, Rapedius M, Stansfeld PJ, Bollepalli MK, Erhlich G, Andres-Enguix I, Fritzenschaft H, Decher N, Sansom MS, Tucker SJ, Baukrowitz T (2011) The pore structure and gating mechanism of K2P channels. EMBO J 30:3607–3619

    Article  PubMed  CAS  Google Scholar 

  13. Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H (2005) International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol Rev 57:463–472

    Article  PubMed  CAS  Google Scholar 

  14. Vacher H, Mohapatra DP, Trimmer JS (2008) Localization and targeting of voltage-dependent ion channels in mammalian central neurons. Physiol Rev 88:1407–1447

    Article  PubMed  CAS  Google Scholar 

  15. Maljevic S, Wuttke TV, Lerche H (2008) Nervous system KV7 disorders: breakdown of a subthreshold brake. J Physiol 586:1791–1801

    Article  PubMed  CAS  Google Scholar 

  16. Martire M, Castaldo P, D’Amico M, Preziosi P, Annunziato L, Taglialatela M (2004) M channels containing KCNQ2 subunits modulate norepinephrine, aspartate, and GABA release from hippocampal nerve terminals. J Neurosci 24:592–597

    Article  PubMed  CAS  Google Scholar 

  17. Peretz A, Sheinin A, Yue C, Gani-Katzav N, Gibor G, Nachman R, Gopin A, Tam E, Shabat D, Yaari Y, Attali B (2007) Pre- and postsynaptic activation of M-channels by a novel opener dampens neuronal firing and transmitter release. J Neurophysiol 97:283–295

    Article  PubMed  CAS  Google Scholar 

  18. Jensen CS, Rasmussen HB, Misonou H (2011) Neuronal trafficking of voltage-gated potassium channels. Mol Cell Neurosci 48:288–297

    Article  PubMed  CAS  Google Scholar 

  19. Misonou H, Trimmer JS (2004) Determinants of voltage-gated potassium channel surface expression and localization in mammalian neurons. Crit Rev Biochem Mol Biol 39:125–145

    Article  PubMed  CAS  Google Scholar 

  20. Vincent A (2010) Autoimmune channelopathies: well-established and emerging immunotherapy-responsive diseases of the peripheral and central nervous systems. J Clin Immunol 30(Suppl 1):S97–S102

    Article  PubMed  CAS  Google Scholar 

  21. Lehmann-Horn F, Jurkat-Rott K (1999) Voltage-gated ion channels and hereditary disease. Physiol Rev 79:1317–1372

    PubMed  CAS  Google Scholar 

  22. Brandt T, Strupp M (1997) Episodic ataxia type 1 and 2 (familial periodic ataxia/vertigo). Audiol Neurootol 2:373–383

    Article  PubMed  CAS  Google Scholar 

  23. Browne DL, Gancher ST, Nutt JG, Brunt ER, Smith EA, Kramer P, Litt M (1994) Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat Genet 8:136–140

    Article  PubMed  CAS  Google Scholar 

  24. Rajakulendran S, Schorge S, Kullmann DM, Hanna MG (2007) Episodic ataxia type 1: a neuronal potassium channelopathy. Neurotherapeutics 4:258–266

    Article  PubMed  CAS  Google Scholar 

  25. Zuberi SM, Eunson LH, Spauschus A, De SR, Tolmie J, Wood NW, McWilliam RC, Stephenson JB, Kullmann DM, Hanna MG (1999) A novel mutation in the human voltage-gated potassium channel gene (Kv1.1) associates with episodic ataxia type 1 and sometimes with partial epilepsy. Brain 122(Pt 5):817–825

    Article  PubMed  Google Scholar 

  26. Glaudemans B, van der Wijst J, Scola RH, Lorenzoni PJ, Heister A, van der Kemp AW, Knoers NV, Hoenderop JG, Bindels RJ (2009) A missense mutation in the Kv1.1 voltage-gated potassium channel-encoding gene KCNA1 is linked to human autosomal dominant hypomagnesemia. J Clin Invest 119:936–942

    Article  PubMed  CAS  Google Scholar 

  27. Jentsch TJ (2000) Neuronal KCNQ potassium channels: physiology and role in disease. Nat Rev Neurosci 1:21–30

    Article  PubMed  CAS  Google Scholar 

  28. Maljevic S, Wuttke TV, Seebohm G, Lerche H (2010) Kv7 channelopathies. Pflugers Arch 460:277–288

    Article  PubMed  CAS  Google Scholar 

  29. Hansen HH, Waroux O, Seutin V, Jentsch TJ, Aznar S, Mikkelsen JD (2008) Kv7 channels: interaction with dopaminergic and serotonergic neurotransmission in the CNS. J Physiol 586:1823–1832

    Article  PubMed  CAS  Google Scholar 

  30. Brown DA, Adams PR (1980) Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 283:673–676

    Article  PubMed  CAS  Google Scholar 

  31. Brown DA, Passmore GM (2009) Neural KCNQ (Kv7) channels. Br J Pharmacol 156:1185–1195

    Article  PubMed  CAS  Google Scholar 

  32. Rogawski MA (2000) KCNQ2/KCNQ3 K+ channels and the molecular pathogenesis of epilepsy: implications for therapy. Trends Neurosci 23:393–398

    Article  PubMed  CAS  Google Scholar 

  33. Gu N, Vervaeke K, Hu H, Storm JF (2005) Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells. J Physiol 566:689–715

    Article  PubMed  CAS  Google Scholar 

  34. Biervert C, Schroeder BC, Kubisch C, Berkovic SF, Propping P, Jentsch TJ, Steinlein OK (1998) A potassium channel mutation in neonatal human epilepsy. Science 279:403–406

    Article  PubMed  CAS  Google Scholar 

  35. Charlier C, Singh NA, Ryan SG, Lewis TB, Reus BE, Leach RJ, Leppert M (1998) A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet 18:53–55

    Article  PubMed  CAS  Google Scholar 

  36. Singh NA, Charlier C, Stauffer D, DuPont BR, Leach RJ, Melis R, Ronen GM, Bjerre I, Quattlebaum T, Murphy JV, McHarg ML, Gagnon D, Rosales TO, Peiffer A, Anderson VE, Leppert M (1998) A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet 18:25–29

    Article  PubMed  CAS  Google Scholar 

  37. Weckhuysen S, Mandelstam S, Suls A, Audenaert D, Deconinck T, Claes LR, Deprez L, Smets K, Hristova D, Yordanova I, Jordanova A, Ceulemans B, Jansen A, Hasaerts D, Roelens F, Lagae L, Yendle S, Stanley T, Heron SE, Mulley JC, Berkovic SF, Scheffer IE, de Jonghe P (2012) KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol 71:15–25

    Article  PubMed  CAS  Google Scholar 

  38. Dedek K, Kunath B, Kananura C, Reuner U, Jentsch TJ, Steinlein OK (2001) Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel. Proc Natl Acad Sci USA 98:12272–12277

    Article  PubMed  CAS  Google Scholar 

  39. Castaldo P, del Giudice EM, Coppola G, Pascotto A, Annunziato L, Taglialatela M (2002) Benign familial neonatal convulsions caused by altered gating of KCNQ2/KCNQ3 potassium channels. J Neurosci 22:RC 199

    Google Scholar 

  40. Hunter J, Maljevic S, Shankar A, Siegel A, Weissman B, Holt P, Olson L, Lerche H, Escayg A (2006) Subthreshold changes of voltage-dependent activation of the K(V)7.2 channel in neonatal epilepsy. Neurobiol Dis 24:194–201

    Article  PubMed  CAS  Google Scholar 

  41. Wuttke TV, Penzien J, Fauler M, Seebohm G, Lehmann-Horn F, Lerche H, Jurkat-Rott K (2008) Neutralization of a negative charge in the S1–S2 region of the KV7.2 (KCNQ2) channel affects voltage-dependent activation in neonatal epilepsy. J Physiol 586:545–555

    Article  PubMed  CAS  Google Scholar 

  42. Wuttke TV, Jurkat-Rott K, Paulus W, Garncarek M, Lehmann-Horn F, Lerche H (2007) Peripheral nerve hyperexcitability due to dominant-negative KCNQ2 mutations. Neurology 69:2045–2053

    Article  PubMed  CAS  Google Scholar 

  43. Coppola G, Castaldo P, del Miraglia GE, Bellini G, Galasso F, Soldovieri MV, Anzalone L, Sferro C, Annunziato L, Pascotto A, Taglialatela M (2003) A novel KCNQ2 K+ channel mutation in benign neonatal convulsions and centrotemporal spikes. Neurology 61:131–134

    Article  PubMed  CAS  Google Scholar 

  44. Neubauer BA, Waldegger S, Heinzinger J, Hahn A, Kurlemann G, Fiedler B, Eberhard F, Muhle H, Stephani U, Garkisch S, Eeg-Olofsson O, Muller U, Sander T (2008) KCNQ2 and KCNQ3 mutations contribute to different idiopathic epilepsy syndromes. Neurology 71:177–183

    Article  PubMed  CAS  Google Scholar 

  45. Guerrini R (2001) Idiopathic epilepsy and paroxysmal dyskinesia. Epilepsia 42(Suppl 3):36–41

    Article  PubMed  Google Scholar 

  46. Guerrini R, Sanchez-Carpintero R, Deonna T, Santucci M, Bhatia KP, Moreno T, Parmeggiani L, Bernardina BD (2002) Early-onset absence epilepsy and paroxysmal dyskinesia. Epilepsia 43:1224–1229

    Article  PubMed  Google Scholar 

  47. Du W, Bautista JF, Yang H, Diez-Sampedro A, You SA, Wang L, Kotagal P, Luders HO, Shi J, Cui J, Richerson GB, Wang QK (2005) Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet 37:733–738

    Article  PubMed  CAS  Google Scholar 

  48. Bernard C, Anderson A, Becker A, Poolos NP, Beck H, Johnston D (2004) Acquired dendritic channelopathy in temporal lobe epilepsy. Science 305:532–535

    Article  PubMed  CAS  Google Scholar 

  49. Huang Q, Bu S, Yu Y, Guo Z, Ghatnekar G, Bu M, Yang L, Lu B, Feng Z, Liu S, Wang F (2007) Diazoxide prevents diabetes through inhibiting pancreatic beta-cells from apoptosis via Bcl-2/Bax rate and p38-beta mitogen-activated protein kinase. Endocrinology 148:81–91

    Article  PubMed  CAS  Google Scholar 

  50. Mannhold R (2004) KATP channel openers: structure-activity relationships and therapeutic potential. Med Res Rev 24:213–266

    Article  PubMed  CAS  Google Scholar 

  51. Ogilvie RI, Nadeau JH, Sitar DS (1982) Diazoxide concentration-response relation in hypertension. Hypertension 4:167–173

    Article  PubMed  CAS  Google Scholar 

  52. Simpson D, Wellington K (2004) Nicorandil: a review of its use in the management of stable angina pectoris, including high-risk patients. Drugs 64:1941–1955

    Article  PubMed  CAS  Google Scholar 

  53. Camerino DC, Tricarico D, Desaphy JF (2007) Ion channel pharmacology. Neurotherapeutics 4:184–198

    Article  PubMed  CAS  Google Scholar 

  54. Mathie A, Veale EL (2007) Therapeutic potential of neuronal two-pore domain potassium-channel modulators. Curr Opin Investig Drugs 8:555–562

    PubMed  CAS  Google Scholar 

  55. Wang Y, Yang PL, Tang JF, Lin JF, Cai XH, Wang XT, Zheng GQ (2008) Potassium channels: possible new therapeutic targets in Parkinson’s disease. Med Hypotheses 71:546–550

    Article  PubMed  CAS  Google Scholar 

  56. Wulff H, Kolski-Andreaco A, Sankaranarayanan A, Sabatier JM, Shakkottai V (2007) Modulators of small- and intermediate-conductance calcium-activated potassium channels and their therapeutic indications. Curr Med Chem 14:1437–1457

    Article  PubMed  CAS  Google Scholar 

  57. Icagen I (2009) Icagen reports top-line results of phase IIa study of senicapoc in exercise-induced asthma (26 Oct 2009, press release)

  58. Nagalla S, Ballas SK (2012) Drugs for preventing red blood cell dehydration in people with sickle cell disease. Cochrane Database Syst Rev 7:CD 003426

    Google Scholar 

  59. Chiang HT, Wu SN (2001) Inhibition of large-conductance calcium-activated potassium channel by 2-methoxyestradiol in cultured vascular endothelial (HUV-EC-C) cells. J Membr Biol 182:203–212

    Article  PubMed  CAS  Google Scholar 

  60. Huang CW, Huang CC, Wu SN (2007) Activation by zonisamide, a newer antiepileptic drug, of large-conductance calcium-activated potassium channel in differentiated hippocampal neuron-derived H19–7 cells. J Pharmacol Exp Ther 321:98–106

    Article  PubMed  CAS  Google Scholar 

  61. Korovkina VP, Brainard AM, Ismail P, Schmidt TJ, England SK (2004) Estradiol binding to maxi-K channels induces their down-regulation via proteasomal degradation. J Biol Chem 279:1217–1223

    Article  PubMed  CAS  Google Scholar 

  62. Nardi A, Olesen SP (2008) BK channel modulators: a comprehensive overview. Curr Med Chem 15:1126–1146

    Article  PubMed  CAS  Google Scholar 

  63. Wu SN, Liu SI, Huang MH (2004) Cilostazol, an inhibitor of type 3 phosphodiesterase, stimulates large-conductance, calcium-activated potassium channels in pituitary GH3 cells and pheochromocytoma PC12 cells. Endocrinology 145:1175–1184

    Article  PubMed  CAS  Google Scholar 

  64. Yang B, Desai R, Kaczmarek LK (2007) Slack and slick K(Na) channels regulate the accuracy of timing of auditory neurons. J Neurosci 27:2617–2627

    Article  PubMed  CAS  Google Scholar 

  65. Brown MR, Kronengold J, Gazula VR, Chen Y, Strumbos JG, Sigworth FJ, Navaratnam D, Kaczmarek LK (2010) Fragile X mental retardation protein controls gating of the sodium-activated potassium channel slack. Nat Neurosci 13:819–821

    Article  PubMed  CAS  Google Scholar 

  66. Santi CM, Martinez-Lopez P, de la Vega-Beltran JL, Butler A, Alisio A, Darszon A, Salkoff L (2010) The SLO3 sperm-specific potassium channel plays a vital role in male fertility. FEBS Lett 584:1041–1046

    Article  PubMed  CAS  Google Scholar 

  67. Wulff H, Castle NA, Pardo LA (2009) Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov 8:982–1001

    Article  PubMed  CAS  Google Scholar 

  68. Wuttke TV, Lerche H (2006) Novel anticonvulsant drugs targeting voltage-dependent ion channels. Exp Opin Investig Drugs 15:1167–1177

    Article  CAS  Google Scholar 

  69. Dunn J, Blight A (2011) Dalfampridine: a brief review of its mechanism of action and efficacy as a treatment to improve walking in patients with multiple sclerosis. Curr Med Res Opin 27:1415–1423

    Article  PubMed  CAS  Google Scholar 

  70. Goodman AD, Brown TR, Edwards KR, Krupp LB, Schapiro RT, Cohen R, Marinucci LN, Blight AR (2010) A phase 3 trial of extended release oral dalfampridine in multiple sclerosis. Ann Neurol 68:494–502

    Article  PubMed  CAS  Google Scholar 

  71. Strupp M, Kalla R, Claassen J, Adrion C, Mansmann U, Klopstock T, Freilinger T, Neugebauer H, Spiegel R, Dichgans M, Lehmann-Horn F, Jurkat-Rott K, Brandt T, Jen JC, Jahn K (2011) A randomized trial of 4-aminopyridine in EA2 and related familial episodic ataxias. Neurology 77:269–275

    Article  PubMed  CAS  Google Scholar 

  72. Keogh M, Sedehizadeh S, Maddison P (2011) Treatment for Lambert-Eaton myasthenic syndrome. Cochrane Database Syst Rev 2:CD 003279

    Google Scholar 

  73. Tatulian L, Delmas P, Abogadie FC, Brown DA (2001) Activation of expressed KCNQ potassium currents and native neuronal M-type potassium currents by the anti-convulsant drug retigabine. J Neurosci 21:5535–5545

    PubMed  CAS  Google Scholar 

  74. Lange W, Geissendorfer J, Schenzer A, Grotzinger J, Seebohm G, Friedrich T, Schwake M (2009) Refinement of the binding site and mode of action of the anticonvulsant retigabine on KCNQ K+ channels. Mol Pharmacol 75:272–280

    Article  PubMed  CAS  Google Scholar 

  75. Schenzer A, Friedrich T, Pusch M, Saftig P, Jentsch TJ, Grotzinger J, Schwake M (2005) Molecular determinants of KCNQ (Kv7) K+ channel sensitivity to the anticonvulsant retigabine. J Neurosci 25:5051–5060

    Article  PubMed  CAS  Google Scholar 

  76. Wuttke TV, Seebohm G, Bail S, Maljevic S, Lerche H (2005) The new anticonvulsant retigabine favors voltage-dependent opening of the Kv7.2 (KCNQ2) channel by binding to its activation gate. Mol Pharmacol 67:1009–1017

    Article  PubMed  CAS  Google Scholar 

  77. Main MJ, Cryan JE, Dupere JR, Cox B, Clare JJ, Burbidge SA (2000) Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine. Mol Pharmacol 58:253–262

    PubMed  CAS  Google Scholar 

  78. Otto JF, Kimball MM, Wilcox KS (2002) Effects of the anticonvulsant retigabine on cultured cortical neurons: changes in electroresponsive properties and synaptic transmission. Mol Pharmacol 61:921–927

    Article  PubMed  CAS  Google Scholar 

  79. Yue C, Yaari Y (2004) KCNQ/M channels control spike after depolarization and burst generation in hippocampal neurons. J Neurosci 24:4614–4624

    Article  PubMed  CAS  Google Scholar 

  80. Large CH, Sokal DM, Nehlig A, Gunthorpe MJ, Sankar R, Crean CS, VanLandingham KE, White HS (2012) The spectrum of anticonvulsant efficacy of retigabine (ezogabine) in animal models: implications for clinical use. Epilepsia 53(3):425–436

    Article  PubMed  CAS  Google Scholar 

  81. Porter RJ, Nohria V, Rundfeldt C (2007) Retigabine. Neurotherapeutics 4:149–154

    Article  PubMed  CAS  Google Scholar 

  82. Brodie MJ, Lerche H, Gil-Nagel A, Elger CE, Hall S, Shin P, Nohria V, Mansbach H; Restore 2 study group (2010) Efficacy and safety of adjunctive ezogabine (retigabine) in refractory partial epilepsy. Neurology 75:1817–1824

    Google Scholar 

  83. French JA, Mansbach H, Shin P (2011) Retigabine 1200 mg/day as adjunctive therapy in adults with refractory partial-onset seizures. In: 13th Congress of the European Federation of Neurological Sciences (EFNS), Florence, Italy, 2009 (p 472)

  84. Porter RJ, Partiot A, Sachdeo R, Nohria V, Alves WM (2007) Randomized, multicenter, dose-ranging trial of retigabine for partial-onset seizures. Neurology 68:1197–1204

    Article  PubMed  CAS  Google Scholar 

  85. Hetherington SH, Biton V, Rigdon GC, Moore EL, Wargin M (2009) A multiple, ascending-dose study of ICA-105665 in patients with epilepsy. Epilepsia 50(Suppl 11):115 (1.234)

    Google Scholar 

  86. Rigdon GC, Hetherington SH, Moore EL, Allison MJ, Wargin M (2009) ICA-105665-02: multiple, ascending dose study: healthy volunteers. Epilepsia 50(Suppl 11):115 (1.233)

    Google Scholar 

  87. Risner ME, Rigdon GC, Moore EL, Allison MJ, Wargin M, Hetherington SH (2009) A single ascending dose study of ICA-105665 in healthy volunteers. Epilepsia 50(Suppl 11):112 (1.228)

    Google Scholar 

  88. Peretz A, Degani N, Nachman R, Uziyel Y, Gibor G, Shabat D, Attali B (2005) Meclofenamic acid and diclofenac, novel templates of KCNQ2/Q3 potassium channel openers, depress cortical neuron activity and exhibit anticonvulsant properties. Mol Pharmacol 67:1053–1066

    Article  PubMed  CAS  Google Scholar 

  89. Peretz A, Pell L, Gofman Y, Haitin Y, Shamgar L, Patrich E, Kornilov P, Gourgy-Hacohen O, Ben-Tal N, Attali B (2010) Targeting the voltage sensor of Kv7.2 voltage-gated K+ channels with a new gating-modifier. Proc Natl Acad Sci USA 107:15637–15642

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors developed the manuscript outline, performed the literature analysis, and take full responsibility for the content of the paper. They thank GlaxoSmithKline and Valeant Pharmaceuticals International for technical review of the manuscript. They thank Dana Fox, PhD, CMPP (Caudex Medical Inc., New York, NY; supported by Valeant Pharmaceuticals International and GlaxoSmithKline) for assistance in preparing the manuscript and figures, and collating the comments of authors and other contributors.

Conflicts of interest

HL has served on the scientific advisory boards for Eisai, GSK, Pfizer, UCB and Valeant Pharmaceuticals International; has received industry-funded travel costs from GSK, Pfizer, and UCB; has received honoraria for speaking engagement of educational activities from Desitin, Eisai, GSK, Pfizer and UCB; and has received research support from UCB and Sanofi-Aventis. SM has no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Lerche.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maljevic, S., Lerche, H. Potassium channels: a review of broadening therapeutic possibilities for neurological diseases. J Neurol 260, 2201–2211 (2013). https://doi.org/10.1007/s00415-012-6727-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-012-6727-8

Keywords

  • Ion channel disorder
  • Epilepsy
  • Pain
  • Antiepileptic drugs
  • Potassium channel