Journal of Neurology

, Volume 260, Issue 1, pp 275–284 | Cite as

High-throughput classification of clinical populations from natural viewing eye movements

  • Po-He Tseng
  • Ian G. M. Cameron
  • Giovanna Pari
  • James N. Reynolds
  • Douglas P. Munoz
  • Laurent Itti
Original Communication

Abstract

Many high-prevalence neurological disorders involve dysfunctions of oculomotor control and attention, including attention deficit hyperactivity disorder (ADHD), fetal alcohol spectrum disorder (FASD), and Parkinson’s disease (PD). Previous studies have examined these deficits with clinical neurological evaluation, structured behavioral tasks, and neuroimaging. Yet, time and monetary costs prevent deploying these evaluations to large at-risk populations, which is critically important for earlier detection and better treatment. We devised a high-throughput, low-cost method where participants simply watched television while we recorded their eye movements. We combined eye-tracking data from patients and controls with a computational model of visual attention to extract 224 quantitative features. Using machine learning in a workflow inspired by microarray analysis, we identified critical features that differentiate patients from control subjects. With eye movement traces recorded from only 15 min of videos, we classified PD versus age-matched controls with 89.6 % accuracy (chance 63.2 %), and ADHD versus FASD versus control children with 77.3 % accuracy (chance 40.4 %). Our technique provides new quantitative insights into which aspects of attention and gaze control are affected by specific disorders. There is considerable promise in using this approach as a potential screening tool that is easily deployed, low-cost, and high-throughput for clinical disorders, especially in young children and elderly populations who may be less compliant to traditional evaluation tests.

Keywords

ADHD FASD Parkinson’s disease Attention deficits Eye tracking 

Supplementary material

415_2012_6631_MOESM1_ESM.pdf (1.4 mb)
Supplementary material 1 (PDF 1399 kb)

References

  1. 1.
    Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215PubMedCrossRefGoogle Scholar
  2. 2.
    Corbetta M, Kincade MJ, Lewis C, Snyder AZ, Sapir A (2005) Neural basis and recovery of spatial attention deficits in spatial neglect. Nat Neurosci 8:1603–1610PubMedCrossRefGoogle Scholar
  3. 3.
    Chan F, Armstrong IT, Pari G, Riopelle RJ, Munoz DP (2005) Deficits in saccadic eye-movement control in Parkinson’s disease. Neuropsychologia 43:784–796PubMedCrossRefGoogle Scholar
  4. 4.
    Cameron IGM, Watanabe M, Pari G, Munoz DP (2010) Executive impairment in Parkinson’s disease: response automaticity and task switching. Neuropsychologia 48:1948–1957PubMedCrossRefGoogle Scholar
  5. 5.
    Terao Y, Fukuda H, Yugeta A, Hikosaka O, Nomura Y, Segawa M et al (2011) Initiation and inhibitory control of saccades with the progression of Parkinson’s disease—changes in three major drives converging on the superior colliculus. Neuropsychologia 49:1794–1806PubMedCrossRefGoogle Scholar
  6. 6.
    Wise SP, Murray EA, Gerfen CR (1996) The frontal cortex-basal ganglia system in primates. Crit Rev Neurobiol 10:317–356PubMedCrossRefGoogle Scholar
  7. 7.
    Munoz DP, Armstrong IT, Hampton KA, Moore KD (2003) Altered control of visual fixation and saccadic eye movements in attention-deficit hyperactivity disorder. J Neurophysiol 90:503–514PubMedCrossRefGoogle Scholar
  8. 8.
    Green CR, Mihic AM, Brien DC, Armstrong IT, Nikkel SM, Stade BC et al (2009) Oculomotor control in children with fetal alcohol spectrum disorders assessed using a mobile eye-tracking laboratory. Eur J Neurosci 29:1302–1309PubMedCrossRefGoogle Scholar
  9. 9.
    Green CR, Munoz DP, Nikkel SM, Reynolds JN (2007) Deficits in eye movement control in children with fetal alcohol spectrum disorders. Alcohol Clin Exp Res 31:500–511PubMedCrossRefGoogle Scholar
  10. 10.
    Kodituwakku PW (2007) Defining the behavioral phenotype in children with fetal alcohol spectrum disorders: a review. Neurosci Biobehav Rev 31:192–201PubMedCrossRefGoogle Scholar
  11. 11.
    Karatekin C (2007) Eye tracking studies of normative and atypical development. Dev Rev 27:283–348CrossRefGoogle Scholar
  12. 12.
    Vaidya CJ, Austin G, Kirkorian G, Ridlehuber HW, Desmond JE, Glover GH et al (2011) Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study. Proc Natl Acad Sci USA 95:14494–14499Google Scholar
  13. 13.
    Amen DG, Carmichael BD (1997) High-resolution brain SPECT imaging in ADHD. Ann Clin Psychiatry 9:81–86PubMedGoogle Scholar
  14. 14.
    Zametkin AJ, Nordahl TE, Gross M, King AC, Semple WE, Rumsey J et al (1990) Cerebral glucose metabolism in adults with hyperactivity of childhood onset. New Engl J Med 15(323):1361–1366CrossRefGoogle Scholar
  15. 15.
    Riley EP, McGee CL (2005) Fetal alcohol spectrum disorders: an overview with emphasis on changes in brain and behavior. Exp Biol Med 230:357–365Google Scholar
  16. 16.
    Kalberg WO, Provost B, Tollison SJ, Tabachnick BG, Robinson LK, Eugene Hoyme H et al (2006) Comparison of motor delays in young children with fetal alcohol syndrome to those with prenatal alcohol exposure and with no prenatal alcohol exposure. Alcohol Clin Exp Res 30:2037–2045PubMedCrossRefGoogle Scholar
  17. 17.
    Lezak MD (1995) Neuropsychological assessment, 3 edn. Oxford University Press, OxfordGoogle Scholar
  18. 18.
    Carr JL, Agnihotri S, Keightley M (2010) Sensory processing and adaptive behavior deficits of children across the fetal alcohol spectrum disorder continuum. Alcohol Clin Exp Res 34:1022–1032PubMedCrossRefGoogle Scholar
  19. 19.
    Munoz DP, Everling S (2004) Look away: the anti-saccade task and the voluntary control of eye movement. Nat Rev Neurosci 5:218–228PubMedCrossRefGoogle Scholar
  20. 20.
    Jones KL, Smith DW (1973) Recognition of the fetal alcohol syndrome in early infancy. Lancet 3(302):999–1001CrossRefGoogle Scholar
  21. 21.
    Crocker N, Vaurio L, Riley EP, Mattson SN (2009) Comparison of adaptive behavior in children with heavy prenatal alcohol exposure or attention-deficit/hyperactivity disorder. Alcohol Clin Exp Res 33:2015–2023PubMedCrossRefGoogle Scholar
  22. 22.
    Itti L, Koch C (2001) Computational modelling of visual attention. Nat Rev Neurosci 2:194–203PubMedCrossRefGoogle Scholar
  23. 23.
    Golub TRR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 15(286):531–537CrossRefGoogle Scholar
  24. 24.
    Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182Google Scholar
  25. 25.
    Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46:389–422CrossRefGoogle Scholar
  26. 26.
    Zhou X, Tuck DP (2007) MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data. Bioinformatics 23:1106–1114PubMedCrossRefGoogle Scholar
  27. 27.
    Jiang W, Simon R (2007) A comparison of bootstrap methods and an adjusted bootstrap approach for estimating the prediction error in microarray classification. Stat Med 26:5320–5334PubMedCrossRefGoogle Scholar
  28. 28.
    Briand KA, Strallow D, Hening W, Poizner H, Sereno AB (1999) Control of voluntary and reflexive saccades in Parkinson’s disease. Exp Brain Res 129:38–48PubMedCrossRefGoogle Scholar
  29. 29.
    Fukushima J, Fukushima K, Miyasaka K, Yamashita I (1994) Voluntary control of saccadic eye movement in patients with frontal cortical lesions and parkinsonian patients in comparison with that in schizophrenics. Biol Psychiatry 36:21–30PubMedCrossRefGoogle Scholar
  30. 30.
    Watanabe M, Munoz DP (2011) Probing basal ganglia functions by saccade eye movements. Eur J Neurosci 33:2070–2090PubMedCrossRefGoogle Scholar
  31. 31.
    Kori A, Miyashita N, Kato M, Hikosaka O, Usui S, Matsumura M (1995) Eye movements in monkeys with local dopamine depletion in the caudate nucleus. II: deficits in voluntary saccades. J Neurosci 15:928–941PubMedGoogle Scholar
  32. 32.
    Pierrot-Deseilligny C, Milea D (2004) Eye movement control by the cerebral cortex. Curr Opin Neurol 17:17–25PubMedCrossRefGoogle Scholar
  33. 33.
    Leh SE, Petrides M, Strafella AP (2010) The neural circuitry of executive functions in healthy subjects and Parkinson’s disease. Neuropsychopharmacology 35:70–85PubMedCrossRefGoogle Scholar
  34. 34.
    Bodis-Wollner I (2003) Neuropsychological and perceptual defects in Parkinson’s disease. Parkinsonism Relat Disord 9(2):S83–S89Google Scholar
  35. 35.
    White OB, Saint-Cyr JA, Tomlinson RD, Sharpe JA (1983) Ocular motor deficits in Parkinson’s disease. II: control of the saccadic and smooth pursuit systems. Brain 106 (Pt 3):571–587Google Scholar
  36. 36.
    van der Stelt O, van der Molen M, Boudewijn Gunning W, Kok A (2001) Neuroelectrical signs of selective attention to color in boys with attention-deficit hyperactivity disorder. Cognitive Brain Res 12:245–264Google Scholar
  37. 37.
    Jonkman LM, Kenemans JL, Kemner C, Verbaten MN, van Engeland H (2004) Dipole source localization of event-related brain activity indicative of an early visual selective attention deficit in ADHD children. Clin Neurophysiol 115:1537–1549PubMedCrossRefGoogle Scholar
  38. 38.
    Burden MJ, Westerlund A, Muckle G, Dodge N, Dewailly E, Nelson CA et al (2011) The effects of maternal binge drinking during pregnancy on neural correlates of response inhibition and memory in childhood. Alcohol Clin Exp Res 35:69–82PubMedCrossRefGoogle Scholar
  39. 39.
    Ermer J, Dunn W (1998) The sensory profile: a discriminant analysis of children with and without disabilities. Am J Occup Ther 52:283–290PubMedCrossRefGoogle Scholar
  40. 40.
    Mangeot SD, Miller LJ, McIntosh DN, McGrath-Clarke J, Simon J, Hagerman RJ et al (2001) Sensory modulation dysfunction in children with attention-deficit–hyperactivity disorder. Dev Med Child Neurol 12(43):399CrossRefGoogle Scholar
  41. 41.
    Parush S, Sohmer H, Steinberg A, Kaitz M (2011) Somatosensory functioning in children with attention deficit hyperactivity disorder. Dev Med Child Neurol 39:464–468Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Po-He Tseng
    • 1
  • Ian G. M. Cameron
    • 2
  • Giovanna Pari
    • 2
    • 3
  • James N. Reynolds
    • 2
    • 4
  • Douglas P. Munoz
    • 2
    • 3
    • 4
    • 5
  • Laurent Itti
    • 1
    • 6
  1. 1.Department of Computer ScienceUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Centre for Neuroscience StudiesQueen’s UniversityKingstonCanada
  3. 3.Department of MedicineQueen’s UniversityKingstonCanada
  4. 4.Department of Biomedical and Molecular ScienceQueen’s UniversityKingstonCanada
  5. 5.Department of PsychologyQueen’s UniversityKingstonCanada
  6. 6.Neuroscience ProgramUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations