Journal of Neurology

, Volume 259, Issue 9, pp 1903–1912 | Cite as

Pain processing in patients with migraine: an event-related fMRI study during trigeminal nociceptive stimulation

  • Antonio Russo
  • Alessandro Tessitore
  • Fabrizio Esposito
  • Laura Marcuccio
  • Alfonso Giordano
  • Renata Conforti
  • Andrea Truini
  • Antonella Paccone
  • Florindo d’Onofrio
  • Gioacchino Tedeschi
Original Communication

Abstract

We explored the functional pattern of the pain-processing network in patients with migraine, in the interictal periods, during trigeminal noxious stimulation. Contact heat evoked potential stimulation induced thermal pain and functional magnetic resonance imaging were used to measure whole-brain activation in 16 patients with episodic migraine without aura and 16 age- and gender-matched healthy controls in response to a severe (53°C) noxious, a moderate (51°C) noxious, and a control (41°C) stimulus applied to the maxillary skin. When comparing the fMRI activation over the entire brain, patients with migraine, with respect to healthy controls, showed a significantly greater activation in the perigenual part of anterior cingulate cortex at 51°C and less activation in the bilateral secondary somatosensory cortex at 53°C. A group-by-stimulus interaction analysis revealed a region in the pons showing a divergent response in patients and healthy controls. Correlation analyses demonstrated that the pons activation correlated with higher headache-related disability in patients. Our findings demonstrate increased antinociceptive activity in patients with migraine, which may represent a compensatory reorganization to modulate pain perception at the same intensity of healthy controls.

Keywords

fMRI Migraine Pain processing Anterior cingulate cortex Secondary somatosensory cortex Pons 

References

  1. 1.
    Kim JH, Kim S, Suh SI et al (2010) Interictal metabolic changes in episodic migraine: a voxel-based FDG-PET study. Cephalalgia 30(1):53–61PubMedGoogle Scholar
  2. 2.
    Messlinger K (2009) Migraine: where and how does the pain originate? Exp Brain Res 196(1):179–193PubMedCrossRefGoogle Scholar
  3. 3.
    Coppola G, Pierelli F, Schoenen J (2007) Is the cerebral cortex hyperexcitable or hyperresponsive in migraine? Cephalalgia 27(12):1427–1439PubMedCrossRefGoogle Scholar
  4. 4.
    Aderjan D, Stankewitz A, May A (2010) Neuronal mechanisms during repetitive trigemino-nociceptive stimulation in migraine patients. Pain 151(1):97–103PubMedCrossRefGoogle Scholar
  5. 5.
    Welch KM, Nagesh V, Aurora SK et al (2001) Periaqueductal gray matter dysfunction in migraine: cause or the burden of illness? Headache 41(7):629–637PubMedCrossRefGoogle Scholar
  6. 6.
    Aurora SK, Barrodale PM, Tipton RL et al (2007) Brainstem dysfunction in chronic migraine as evidenced by neurophysiological and positron emission tomography studies. Headache 47(7):996–1003 (discussion 1004–1007)PubMedCrossRefGoogle Scholar
  7. 7.
    Moulton EA, Burstein R, Tully S et al (2008) Interictal dysfunction of a brainstem descending modulatory center in migraine patients. PLoS One 3(11):e3799PubMedCrossRefGoogle Scholar
  8. 8.
    May A, Goadsby PJ (1999) The trigeminovascular system in humans: pathophysiologic implications for primary headache syndromes of the neural influences on the cerebral circulation. J Cereb Blood Flow Metab 19(2):115–127PubMedCrossRefGoogle Scholar
  9. 9.
    Borsook D, Burstein R, Becerra L (2004) Functional imaging of the human trigeminal system: opportunities for new insights into pain processing in health and disease. J Neurobiol 61(1):107–125PubMedCrossRefGoogle Scholar
  10. 10.
    Kovelowski CJ, Ossipov MH, Sun H et al (2000) Supraspinal cholecystokinin may drive tonic descending facilitation mechanisms to maintain neuropathic pain in the rat. Pain 87(3):265–273PubMedCrossRefGoogle Scholar
  11. 11.
    Kim JH, Suh SI, Seol HY et al (2008) Regional grey matter changes in patients with migraine: a voxel-based morphometry study. Cephalalgia 28(6):598–604PubMedCrossRefGoogle Scholar
  12. 12.
    Bahra A, Matharu MS, Buchel C et al (2001) Brainstem activation specific to migraine headache. Lancet 357(9261):1016–1017PubMedCrossRefGoogle Scholar
  13. 13.
    Weiller C, May A, Limmroth V et al (1995) Brain stem activation in spontaneous human migraine attacks. Nat Med 1(7):658–660PubMedCrossRefGoogle Scholar
  14. 14.
    Afridi SK, Giffin NJ, Kaube H et al (2005) A positron emission tomographic study in spontaneous migraine. Arch Neurol 62(8):1270–1275PubMedCrossRefGoogle Scholar
  15. 15.
    Afridi SK, Matharu MS, Lee L et al (2005) A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate. Brain 128(Pt 4):932–939PubMedCrossRefGoogle Scholar
  16. 16.
    Stankewitz A, Aderjan D, Eippert F et al (2011) Trigeminal nociceptive transmission in migraineurs predicts migraine attacks. J Neurosci 31(6):1937–1943PubMedCrossRefGoogle Scholar
  17. 17.
    Roberts K, Papadaki A, Goncalves C et al (2008) Contact heat evoked potentials using simultaneous EEG and fMRI and their correlation with evoked pain. BMC Anesthesiol 8:8PubMedCrossRefGoogle Scholar
  18. 18.
    Truini A, Galeotti F, Pennisi E et al (2007) Trigeminal small-fibre function assessed with contact heat evoked potentials in humans. Pain 132(1–2):102–107PubMedCrossRefGoogle Scholar
  19. 19.
    Headache Classification Committee of the International Headache Society (2004) The international classification of headache disorders: 2nd edition. Cephalalgia 24(Suppl 1):9–160Google Scholar
  20. 20.
    Sauro KM, Rose MS, Becker WJ et al (2010) HIT-6 and MIDAS as measures of headache disability in a headache referral population. Headache 50(3):383–395PubMedCrossRefGoogle Scholar
  21. 21.
    Bayliss MS, Dewey JE, Dunlap I et al (2003) A study of the feasibility of Internet administration of a computerized health survey: the headache impact test (HIT). Qual Life Res 12(8):953–961PubMedCrossRefGoogle Scholar
  22. 22.
    Stankewitz A, Voit HL, Bingel U et al (2010) A new trigemino-nociceptive stimulation model for event-related fMRI. Cephalalgia 30(4):475–485PubMedGoogle Scholar
  23. 23.
    Olesen J, Burstein R, Ashina M, Tfelt-Hansen P (2009) Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurol 8(7):679–690PubMedCrossRefGoogle Scholar
  24. 24.
    Friston KJ, Frith CD, Frackowiak RS et al (1995) Characterizing dynamic brain responses with fMRI: a multivariate approach. Neuroimage 2(2):166–172PubMedCrossRefGoogle Scholar
  25. 25.
    Friston KJ, Holmes AP, Poline JB et al (1995) Analysis of fMRI time-series revisited. Neuroimage 2(1):45–53PubMedCrossRefGoogle Scholar
  26. 26.
    Forman SD, Cohen JD, Fitzgerald M, Eddy WF et al (1995) Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Reson Med 33(5):636–647PubMedCrossRefGoogle Scholar
  27. 27.
    Peyron R, Laurent B, Garcia-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta-analysis. Neurophysiol Clin 30(5):263–288PubMedCrossRefGoogle Scholar
  28. 28.
    Brooks J, Tracey I (2005) From nociception to pain perception: imaging the spinal and supraspinal pathways. J Anat 207(1):19–33PubMedCrossRefGoogle Scholar
  29. 29.
    Tracey I, Dunckley P (2004) Importance of anti- and pro-nociceptive mechanisms in human disease. Gut 53(11):1553–1555PubMedCrossRefGoogle Scholar
  30. 30.
    May A (2006) A review of diagnostic and functional imaging in headache. J Headache Pain 7(4):174–184PubMedCrossRefGoogle Scholar
  31. 31.
    Valfre W, Rainero I, Bergui M et al (2008) Voxel-based morphometry reveals gray matter abnormalities in migraine. Headache 48(1):109–117PubMedCrossRefGoogle Scholar
  32. 32.
    Seifert F, Maihofner C (2009) Central mechanisms of experimental and chronic neuropathic pain: findings from functional imaging studies. Cell Mol Life Sci 66(3):375–390PubMedCrossRefGoogle Scholar
  33. 33.
    Tessitore A, Russo A, Esposito F et al (2011) Interictal cortical reorganization in episodic migraine without aura: an event-related fMRI study during parametric trigeminal nociceptive stimulation. Neurol Sci 32(Suppl 1):S165–S167PubMedCrossRefGoogle Scholar
  34. 34.
    Ferraro S, Grazzi L, Mandelli ML et al (2011) Pain processing in medication overuse headache: a functional magnetic resonance imaging (fMRI) study. Pain Med [Epub ahead of print]Google Scholar
  35. 35.
    Rocca MA, Ceccarelli A, Falini A et al (2006) Brain gray matter changes in migraine patients with T2-visible lesions: a 3-T MRI study. Stroke 37:1765–1770PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Antonio Russo
    • 1
    • 2
  • Alessandro Tessitore
    • 1
  • Fabrizio Esposito
    • 2
    • 3
  • Laura Marcuccio
    • 1
  • Alfonso Giordano
    • 1
    • 2
  • Renata Conforti
    • 2
  • Andrea Truini
    • 4
    • 5
  • Antonella Paccone
    • 2
  • Florindo d’Onofrio
    • 6
  • Gioacchino Tedeschi
    • 1
    • 2
  1. 1.Department of Neurological SciencesSecond University of NaplesNaplesItaly
  2. 2.Neurological Institute for Diagnosis and Care “Hermitage Capodimonte”NaplesItaly
  3. 3.Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
  4. 4.Department of Neurology and PsychiatryUniversity SapienzaRomeItaly
  5. 5.Don Gnocchi FoundationMilanItaly
  6. 6.Unit of NeurologyAzienda Ospedaliera “S.G. Moscati” AvellinoAvellinoItaly

Personalised recommendations