Journal of Neurology

, Volume 259, Issue 6, pp 1199–1205 | Cite as

Decreased microglial activation in MS patients treated with glatiramer acetate

  • John N. Ratchford
  • Christopher J. Endres
  • Dima A. Hammoud
  • Martin G. Pomper
  • Navid Shiee
  • John McGready
  • Dzung L. Pham
  • Peter A. Calabresi
Original Communication


Activated microglia are thought to be an important contributor to tissue damage in multiple sclerosis (MS). The level of microglial activation can be measured non-invasively using [11C]-R-PK11195, a radiopharmaceutical for positron emission tomography (PET). Prior studies have identified abnormalities in the level of [11C]-R-PK11195 uptake in patients with MS, but treatment effects have not been evaluated. Nine previously untreated relapsing-remitting MS patients underwent PET and magnetic resonance imaging of the brain at baseline and after 1 year of treatment with glatiramer acetate. Parametric maps of [11C]-R-PK11195 uptake were obtained for baseline and post-treatment PET scans, and the change in [11C]-R-PK11195 uptake pre- to post-treatment was evaluated across the whole brain. Region-of-interest analysis was also applied to selected subregions. Whole brain [11C]-R-PK11195 binding potential per unit volume decreased 3.17% (95% CI: −0.74, −5.53%) between baseline and 1 year (p = 0.018). A significant decrease was noted in cortical gray matter and cerebral white matter, and a trend towards decreased uptake was seen in the putamen and thalamus. The results are consistent with a reduction in inflammation due to treatment with glatiramer acetate, though a larger controlled study would be required to prove that association. Future research will focus on whether the level of baseline microglial activation predicts future tissue damage in MS and whether [11C]-R-PK11195 uptake in cortical gray matter correlates with cortical lesion load.


Multiple sclerosis Positron emission tomography Microglia Copolymer 1 Immunology PK11195 


  1. 1.
    Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285PubMedCrossRefGoogle Scholar
  2. 2.
    Perry VH, Gordon S (1991) Macrophages and the nervous system. Int Rev Cytol 125:203–244PubMedCrossRefGoogle Scholar
  3. 3.
    Guillemin GJ, Brew BJ (2004) Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol 75:388–397PubMedCrossRefGoogle Scholar
  4. 4.
    Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 20:269–287PubMedCrossRefGoogle Scholar
  5. 5.
    Dangond F, Windhagen A, Groves CJ, Hafler DA (1997) Constitutive expression of costimulatory molecules by human microglia and its relevance to CNS autoimmunity. J Neuroimmunol 76:132–138PubMedCrossRefGoogle Scholar
  6. 6.
    Benveniste EN (1997) Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J Mol Med 75:165–173PubMedCrossRefGoogle Scholar
  7. 7.
    Bauer J, Sminia T, Wouterlood FG, Dijkstra CD (1994) Phagocytic activity of macrophages and microglial cells during the course of acute and chronic relapsing experimental autoimmune encephalomyelitis. J Neurosci Res 38:365–375PubMedCrossRefGoogle Scholar
  8. 8.
    Brosnan CF, Bornstein MB, Bloom BR (1981) The effects of macrophage depletion on the clinical and pathologic expression of experimental allergic encephalomyelitis. J Immunol 126:614–620PubMedGoogle Scholar
  9. 9.
    Huitinga I, van Rooijen N, de Groot CJ, Uitdehaag BM, Dijkstra CD (1990) Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J Exp Med 172:1025–1033PubMedCrossRefGoogle Scholar
  10. 10.
    Sriram S, Rodriguez M (1997) Indictment of the microglia as the villain in multiple sclerosis. Neurology 48:464–470PubMedCrossRefGoogle Scholar
  11. 11.
    Dubois A, Benavides J, Peny B, Duverger D, Fage D, Gotti B, MacKenzie ET, Scatton B (1988) Imaging of primary and remote ischaemic and excitotoxic brain lesions. An autoradiographic study of peripheral type benzodiazepine binding sites in the rat and cat. Brain Res 445:77–90PubMedCrossRefGoogle Scholar
  12. 12.
    Myers R, Manjil LG, Cullen BM, Price GW, Frackowiak RS, Cremer JE (1991) Macrophage and astrocyte populations in relation to [3H]PK 11195 binding in rat cerebral cortex following a local ischaemic lesion. J Cereb Blood Flow Metab 11:314–322PubMedCrossRefGoogle Scholar
  13. 13.
    Banati RB, Myers R, Kreutzberg GW (1997) PK (‘peripheral benzodiazepine’)–binding sites in the CNS indicate early and discrete brain lesions: microautoradiographic detection of [3H]PK11195 binding to activated microglia. J Neurocytol 26:77–82PubMedCrossRefGoogle Scholar
  14. 14.
    Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F, Price G, Wegner F, Giovannoni G, Miller DH, Perkin GD, Smith T, Hewson AK, Bydder G, Kreutzberg GW, Jones T, Cuzner ML, Myers R (2000) The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 123(Pt 11):2321–2337PubMedCrossRefGoogle Scholar
  15. 15.
    Casellas P, Galiegue S, Basile AS (2002) Peripheral benzodiazepine receptors and mitochondrial function. Neurochem Int 40:475–486PubMedCrossRefGoogle Scholar
  16. 16.
    Venneti S, Lopresti BJ, Wiley CA (2006) The peripheral benzodiazepine receptor (Translocator protein 18 kDa) in microglia: from pathology to imaging. Prog Neurobiol 80:308–322PubMedCrossRefGoogle Scholar
  17. 17.
    Debruyne JC, Versijpt J, Van Laere KJ, De Vos F, Keppens J, Strijckmans K, Achten E, Slegers G, Dierckx RA, Korf J, De Reuck JL (2003) PET visualization of microglia in multiple sclerosis patients using [11C]PK11195. Eur J Neurol 10:257–264PubMedCrossRefGoogle Scholar
  18. 18.
    Versijpt J, Debruyne JC, Van Laere KJ, De Vos F, Keppens J, Strijckmans K, Achten E, Slegers G, Dierckx RA, Korf J, De Reuck JL (2005) Microglial imaging with positron emission tomography and atrophy measurements with magnetic resonance imaging in multiple sclerosis: a correlative study. Mult Scler 11:127–134PubMedCrossRefGoogle Scholar
  19. 19.
    Politis M, Giannetti P, Su P, Turkheimer F, Keihaninejad S, Wu K, Waldman A, Reynolds R, Nicholas R, Piccini P (2010) Cortical microglial activation is associated with disability in secondary progressive multiple sclerosis: an in vivo imaging study. Neurology 74:A290Google Scholar
  20. 20.
    Oh U, Fujita M, Ikonomidou VN, Evangelou IE, Matsuura E, Harberts E, Ohayon J, Pike VW, Zhang Y, Zoghbi SS, Innis RB, Jacobson S (2010) Translocator Protein PET Imaging for Glial Activation in Multiple Sclerosis. J Neuroimmune Pharmacol 6:354–361PubMedCrossRefGoogle Scholar
  21. 21.
    Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, Lublin FD, Metz LM, McFarland HF, O’Connor PW, Sandberg-Wollheim M, Thompson AJ, Weinshenker BG, Wolinsky JS (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 58:840–846PubMedCrossRefGoogle Scholar
  22. 22.
    Shiee N, Bazin PL, Ozturk A, Reich DS, Calabresi PA, Pham DL (2010) A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. Neuroimage 49:1524–1535PubMedCrossRefGoogle Scholar
  23. 23.
    Kropholler MA, Boellaard R, van Berckel BN, Schuitemaker A, Kloet RW, Lubberink MJ, Jonker C, Scheltens P, Lammertsma AA (2007) Evaluation of reference regions for (R)-[(11)C]PK11195 studies in Alzheimer’s disease and mild cognitive impairment. J Cereb Blood Flow Metab 27:1965–1974PubMedCrossRefGoogle Scholar
  24. 24.
    Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16:834–840PubMedCrossRefGoogle Scholar
  25. 25.
    Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95–113PubMedCrossRefGoogle Scholar
  26. 26.
    Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170PubMedCrossRefGoogle Scholar
  27. 27.
    Dhib-Jalbut S (2002) Mechanisms of action of interferons and glatiramer acetate in multiple sclerosis. Neurology 58:S3–S9PubMedCrossRefGoogle Scholar
  28. 28.
    Kim HJ, Ifergan I, Antel JP, Seguin R, Duddy M, Lapierre Y, Jalili F, Bar-Or A (2004) Type 2 monocyte and microglia differentiation mediated by glatiramer acetate therapy in patients with multiple sclerosis. J Immunol 172:7144–7153PubMedGoogle Scholar
  29. 29.
    Pul R, Moharregh-Khiabani D, Skuljec J, Skripuletz T, Garde N, Voss EV, Stangel M (2010) Glatiramer acetate modulates TNF-alpha and IL-10 secretion in microglia and promotes their phagocytic activity. J Neuroimmune Pharmacol 6:381–388PubMedCrossRefGoogle Scholar
  30. 30.
    Trapp BD, Wujek JR, Criste GA, Jalabi W, Yin X, Kidd GJ, Stohlman S, Ransohoff R (2007) Evidence for synaptic stripping by cortical microglia. Glia 55:360–368PubMedCrossRefGoogle Scholar
  31. 31.
    Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, Gudz T, Macklin WB, Lewis DA, Fox RJ, Rudick R, Mirnics K, Trapp BD (2006) Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 59:478–489PubMedCrossRefGoogle Scholar
  32. 32.
    Endres CJ, Pomper MG, James M, Uzuner O, Hammoud DA, Watkins CC, Reynolds A, Hilton J, Dannals RF, Kassiou M (2009) Initial evaluation of 11C-DPA-713, a novel TSPO PET ligand, in humans. J Nucl Med 50:1276–1282PubMedCrossRefGoogle Scholar
  33. 33.
    Ikoma Y, Yasuno F, Ito H, Suhara T, Ota M, Toyama H, Fujimura Y, Takano A, Maeda J, Zhang MR, Nakao R, Suzuki K (2007) Quantitative analysis for estimating binding potential of the peripheral benzodiazepine receptor with [(11)C]DAA1106. J Cereb Blood Flow Metab 27:173–184PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • John N. Ratchford
    • 1
  • Christopher J. Endres
    • 2
  • Dima A. Hammoud
    • 2
  • Martin G. Pomper
    • 2
  • Navid Shiee
    • 2
  • John McGready
    • 3
  • Dzung L. Pham
    • 4
    • 5
  • Peter A. Calabresi
    • 1
  1. 1.Department of NeurologyJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of RadiologyJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of BiostatisticsJohns Hopkins Bloomberg School of Public HealthBaltimoreUSA
  4. 4.Department of Electrical EngineeringJohns Hopkins UniversityBaltimoreUSA
  5. 5.Center for Neuroscience and Regenerative MedicineHenry Jackson FoundationBethesdaUSA

Personalised recommendations