Skip to main content

Advertisement

Log in

Congenital myasthenic syndrome with tubular aggregates caused by GFPT1 mutations

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Congenital myasthenic syndrome (CMS) is a clinically and genetically heterogeneous group of inherited disorders of the neuromuscular junction. A difficult to diagnose subgroup of CMS is characterised by proximal muscle weakness and fatigue while ocular and facial involvement is only minimal. DOK7 mutations have been identified as causing the disorder in about half of the cases. More recently, using classical positional cloning, we have identified mutations in a previously unrecognised CMS gene, GFPT1, in a series of DOK7-negative cases. However, detailed description of clinical features of GFPT1 patients has not been reported yet. Here we describe the clinical picture of 24 limb-girdle CMS (LG-CMS) patients and pathological findings of 18 of them, all carrying GFPT1 mutations. Additional patients with CMS, but without tubular aggregates, and patients with non-fatigable weakness with tubular aggregates were also screened. In most patients with GFPT1 mutations, onset of the disease occurs in the first decade of life with characteristic limb-girdle weakness and fatigue. A common feature was beneficial and sustained response to acetylcholinesterase inhibitor treatment. Most of the patients who had a muscle biopsy showed tubular aggregates in myofibers. Analysis of endplate morphology in one of the patients revealed unspecific abnormalities. Our study delineates the phenotype of CMS associated with GFPT1 mutations and expands the understanding of neuromuscular junction disorders. As tubular aggregates in context of a neuromuscular transmission defect appear to be highly indicative, we suggest calling this condition congenital myasthenic syndrome with tubular aggregates (CMS-TA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AChE:

Acetylcholinesterase

AChR:

Acetylcholine receptor

CK:

Creatine kinase

CMAP:

Compound muscle action potential

CMS:

Congenital myasthenic syndrome

3,4-DAP:

3,4-Diaminopyridine

DOK7 :

Downstream of kinase 7 gene

EM:

Electron microscopy

EMG:

Electromyography

LG-CMS:

Limb-girdle congenital myasthenic syndrome

NMJ:

Neuromuscular junction

RNS:

Repetitive nerve stimulation

SFEMG:

Single-fiber EMG

TA:

Tubular aggregates

GFPT1/GFAT1 :

Glutamine-fructose-6-phosphate transaminase 1

References

  1. Engel AG, Sine SM (2005) Current understanding of congenital myasthenic syndromes. Curr Opin Pharmacol 5:308–321

    Article  PubMed  CAS  Google Scholar 

  2. Müller JS, Mihaylova V, Abicht A, Lochmuller H (2007) Congenital myasthenic syndromes: spotlight on genetic defects of neuromuscular transmission. Expert Rev Mol Med 9:1–20

    Article  PubMed  Google Scholar 

  3. McQuillen MP (1966) Familial limb-girdle myasthenia. Brain 89:121–132

    Article  PubMed  CAS  Google Scholar 

  4. Beeson D, Higuchi O, Palace J, Cossins J, Spearman H, Maxwell S, Newsom-Davis J, Burke G, Fawcett P, Motomura M et al (2006) Dok-7 mutations underlie a neuromuscular junction synaptopathy. Science (New York, NY) 313:1975–1978

    Article  CAS  Google Scholar 

  5. Ben Ammar A, Petit F, Alexandri N, Gaudon K, Bauche S, Rouche A, Gras D, Fournier E, Koenig J, Stojkovic T et al (2010) Phenotype genotype analysis in 15 patients presenting a congenital myasthenic syndrome due to mutations in DOK7. J Neurol 257:754–766

    Article  PubMed  CAS  Google Scholar 

  6. Müller JS, Herczegfalvi A, Vilchez JJ, Colomer J, Bachinski LL, Mihaylova V, Santos M, Schara U, Deschauer M, Shevell M et al (2007) Phenotypical spectrum of DOK7 mutations in congenital myasthenic syndromes. Brain 130:1497–1506

    Article  PubMed  Google Scholar 

  7. Palace J, Lashley D, Newsom-Davis J, Cossins J, Maxwell S, Kennett R, Jayawant S, Yamanashi Y, Beeson D (2007) Clinical features of the DOK7 neuromuscular junction synaptopathy. Brain 130:1507–1515

    Article  PubMed  Google Scholar 

  8. Selcen D, Milone M, Shen XM, Harper CM, Stans AA, Wieben ED, Engel AG (2008) Dok-7 myasthenia: phenotypic and molecular genetic studies in 16 patients. Ann Neurol 64:71–87

    Article  PubMed  CAS  Google Scholar 

  9. Anderson JA, Ng JJ, Bowe C, McDonald C, Richman DP, Wollmann RL, Maselli RA (2008) Variable phenotypes associated with mutations in DOK7. Muscle Nerve 37:448–456

    Article  PubMed  CAS  Google Scholar 

  10. Senderek J, Müller JS, Dusl M, Strom TM, Guergueltcheva V, Diepolder I, Laval SH, Maxwell S, Cossins J, Krause S et al (2011) Hexosamine biosynthetic pathway mutations cause neuromuscular transmission defect. Am J Hum Genet 88:162–172

    Article  PubMed  CAS  Google Scholar 

  11. Haltiwanger RS, Lowe JB (2004) Role of glycosylation in development. Annu Rev Biochem 73:491–537

    Article  PubMed  CAS  Google Scholar 

  12. Rodolico C, Toscano A, Autunno M, Messina S, Nicolosi C, Aguennouz M, Laura M, Girlanda P, Messina C, Vita G (2002) Limb-girdle myasthenia: clinical, electrophysiological and morphological features in familial and autoimmune cases. Neuromuscul Disord 12:964–969

    Article  PubMed  CAS  Google Scholar 

  13. Sieb JP, Tolksdorf K, Dengler R, Jerusalem F (1996) An autosomal-recessive congenital myasthenic syndrome with tubular aggregates in a Libyan family. Neuromuscul Disord 6:115–119

    Article  PubMed  CAS  Google Scholar 

  14. Ohno K, Tsujino A, Brengman JM, Harper CM, Bajzer Z, Udd B, Beyring R, Robb S, Kirkham FJ, Engel AG (2001) Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans. Proc Natl Acad Sci USA 98:2017–2022

    Article  PubMed  CAS  Google Scholar 

  15. Chevessier F, Bauche-Godard S, Leroy JP, Koenig J, Paturneau-Jouas M, Eymard B, Hantai D, Verdiere-Sahuque M (2005) The origin of tubular aggregates in human myopathies. J Pathol 207:313–323

    Article  PubMed  CAS  Google Scholar 

  16. Slater CR, Fawcett PR, Walls TJ, Lyons PR, Bailey SJ, Beeson D, Young C, Gardner-Medwin D (2006) Pre- and post-synaptic abnormalities associated with impaired neuromuscular transmission in a group of patients with ‘limb-girdle myasthenia’. Brain 129:2061–2076

    Article  PubMed  CAS  Google Scholar 

  17. Azulay JP, Pouget J, Figarella-Branger D, Colamarino R, Pellissier JF, Serratrice G (1994) Isolated proximal muscular weakness disclosing myasthenic syndrome. Rev Neurol (Paris) 150:377–381

    CAS  Google Scholar 

  18. Dobkin BH, Verity MA (1978) Familial neuromuscular disease with type 1 fiber hypoplasia, tubular aggregates, cardiomyopathy, and myasthenic features. Neurology 28:1135–1140

    Article  PubMed  CAS  Google Scholar 

  19. Furui E, Fukushima K, Sakashita T, Sakato S, Matsubara S, Takamori M (1997) Familial limb-girdle myasthenia with tubular aggregates. Muscle Nerve 20:599–603

    Article  PubMed  CAS  Google Scholar 

  20. Johns TR, Campa JF, Adelman LS (1973) Familial myasthenia with ‘tubular aggregates’ treated with prednisone. Neurology 73:426

    Google Scholar 

  21. Johns TR, Campa JF, Crowley WJ, Miller JQ (1971) Familial myasthenic myopathy. Neurology 71:449

    Google Scholar 

  22. Zephir H, Stojkovic T, Maurage CA, Hurtevent JF, Vermersch P (2001) Tubular aggregate congenital myopathy associated with neuromuscular block. Rev Neurol (Paris) 157:1293–1296

    CAS  Google Scholar 

  23. Schara U, Barisic N, Deschauer M, Lindberg C, Straub V, Strigl-Pill N, Wendt M, Abicht A, Muller JS, Lochmuller H (2009) Ephedrine therapy in eight patients with congenital myasthenic syndrome due to DOK7 mutations. Neuromuscul Disord 19:828–832

    Article  PubMed  CAS  Google Scholar 

  24. Lashley D, Palace J, Jayawant S, Robb S, Beeson D (2010) Ephedrine treatment in congenital myasthenic syndrome due to mutations in DOK7. Neurology 74:1517–1523

    Article  PubMed  CAS  Google Scholar 

  25. Mihaylova V, Müller JS, Vilchez JJ, Salih MA, Kabiraj MM, D’Amico A, Bertini E, Wolfle J, Schreiner F, Kurlemann G et al (2008) Clinical and molecular genetic findings in COLQ-mutant congenital myasthenic syndromes. Brain 131:747–759

    Article  PubMed  Google Scholar 

  26. Müller JS, Mildner G, Muller-Felber W, Schara U, Krampfl K, Petersen B, Petrova S, Stucka R, Mortier W, Bufler J et al (2003) Rapsyn N88 K is a frequent cause of congenital myasthenic syndromes in European patients. Neurology 60:1805–1810

    Article  PubMed  Google Scholar 

  27. Cossins J, Burke G, Maxwell S, Spearman H, Man S, Kuks J, Vincent A, Palace J, Fuhrer C, Beeson D (2006) Diverse molecular mechanisms involved in AChR deficiency due to rapsyn mutations. Brain 129:2773–2783

    Article  PubMed  Google Scholar 

  28. Oki T, Yamazaki K, Kuromitsu J, Okada M, Tanaka I (1999) cDNA cloning and mapping of a novel subtype of glutamine:fructose-6-phosphate amidotransferase (GFAT2) in human and mouse. Genomics 57:227–234

    Article  PubMed  CAS  Google Scholar 

  29. Niimi M, Ogawara T, Yamashita T, Yamamoto Y, Ueyama A, Kambe T, Okamoto T, Ban T, Tamanoi H, Ozaki K et al (2001) Identification of GFAT1-L, a novel splice variant of human glutamine: fructose-6-phosphate amidotransferase (GFAT1) that is expressed abundantly in skeletal muscle. J Hum Genet 46:566–571

    Article  PubMed  CAS  Google Scholar 

  30. Pavlovicova M, Novotova M, Zahradnik I (2003) Structure and composition of tubular aggregates of skeletal muscle fibres. Gen Physiol Biophys 22:425–440

    PubMed  CAS  Google Scholar 

  31. Engel WK, Bishop DW, Cunningham GG (1970) Tubular aggregates in type II muscle fibers: ultrastructural and histochemical correlation. J Ultrastruct Res 31:507–525

    Article  PubMed  CAS  Google Scholar 

  32. Schubert W, Sotgia F, Cohen AW, Capozza F, Bonuccelli G, Bruno C, Minetti C, Bonilla E, Dimauro S, Lisanti MP (2007) Caveolin-1(−/−)- and caveolin-2(−/−)-deficient mice both display numerous skeletal muscle abnormalities, with tubular aggregate formation. Am J Pathol 170:316–333

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank the patients and their families for participating in this study. The Institute of Genetic Medicine in Newcastle is part of the MRC centre for Neuromuscular Diseases. AA, JK, BS, RH, TV and HL are members of the German Muscular Dystrophy Network (MD-NET 01GM0601) funded by the German Ministry of Education and Research (BMBF, Bonn, Germany; http://www.md-net.org). Newcastle University and MD-NET are partners of TREAT-NMD (EC, 6th FP, proposal #036825; http://www.treat-nmd.eu). VG is a research fellow of the Alexander von Humboldt Foundation. JS is a Heisenberg fellow of the Deutsche Forschungsgemeinschaft. AA is supported by a grant from the Deutsche Forschungsgemeinschaft (Ab 130/2-1), DB by grants from the Medical Research Council, the Myasthenia Gravis Association and the Muscular Dystrophy Campaign. JSM receives a research fellowship by the Faculty of Medical Sciences, Newcastle University. NM received a fellowship from the Instituto de Salud Carlos III and Fundación para la Investigación del Hospital Universitario La Fe (CM06/00154). JJV and NM are members of CIBER de Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanns Lochmüller.

Additional information

V. Guergueltcheva and J. S. Müller contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guergueltcheva, V., Müller, J.S., Dusl, M. et al. Congenital myasthenic syndrome with tubular aggregates caused by GFPT1 mutations. J Neurol 259, 838–850 (2012). https://doi.org/10.1007/s00415-011-6262-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-011-6262-z

Keywords

Navigation