Abstract
Myasthenia gravis (MG) is an autoimmune disorder characterized by a defect in synaptic transmission at the neuromuscular junction causing fluctuating muscle weakness with a decremental response to repetitive nerve stimulation or altered jitter in single-fiber electromyography (EMG). Approximately 80% of all myasthenia gravis patients have autoantibodies against the nicotinic acetylcholine receptor in their serum. Autoantibodies against the tyrosine kinase muscle-specific kinase (MuSK) are responsible for 5–10% of all myasthenia gravis cases. The autoimmune target in the remaining cases is unknown. Recently, low-density lipoprotein receptor-related protein 4 (LRP4) has been identified as the agrin receptor. LRP4 interacts with agrin, and the binding of agrin activates MuSK, which leads to the formation of most if not all postsynaptic specializations, including aggregates containing acetylcholine receptors (AChRs) in the junctional plasma membrane. In the present study we tested if autoantibodies against LRP4 are detectable in patients with myasthenia gravis. To this end we analyzed 13 sera from patients with generalized myasthenia gravis but without antibodies against AChR or MuSK. The results showed that 12 out of 13 antisera from double-seronegative MG patients bound to proteins concentrated at the neuromuscular junction of adult mouse skeletal muscle and that approximately 50% of the tested sera specifically bound to HEK293 cells transfected with human LRP4. Moreover, 4 out of these 13 sera inhibited agrin-induced aggregation of AChRs in cultured myotubes by more than 50%, suggesting a pathogenic role regarding the dysfunction of the neuromuscular endplate. These results indicate that LRP4 is a novel target for autoantibodies and is a diagnostic marker in seronegative MG patients.
Similar content being viewed by others
References
Romi F, Gilhus NE, Aarli JA (2006) Myasthenia gravis: disease severity and prognosis. Acta Neurol Scand Suppl 183:24–25
Newsom-Davis J (2007) The emerging diversity of neuromuscular junction disorders. Acta Myol 26:5–10
Farrugia ME, Vincent A (2010) Autoimmune mediated neuromuscular junction defects. Curr Opin Neurol 23:489–495
Lindstrom JM, Einarson BL, Lennon VA, Seybold ME (1976) Pathological mechanisms in experimental autoimmune myasthenia gravis. I. Immunogenicity of syngeneic muscle acetylcholine receptor and quantitative extraction of receptor and antibody-receptor complexes from muscles of rats with experimental automimmune myasthenia gravis. J Exp Med 144:726–738
Drachman DB, de Silva S, Ramsay D, Pestronk A (1987) Humoral pathogenesis of myasthenia gravis. Ann N Y Acad Sci 505:90–105
Engel AG (1979) The immunopathological basis of acetylcholine receptor deficiency in myasthenia gravis. Prog Brain Res 49:423–434
Burges J, Wray DW, Pizzighella S, Hall Z, Vincent A (1990) A myasthenia gravis plasma immunoglobulin reduces miniature endplate potentials at human endplates in vitro. Muscle Nerve 13:407–413
Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A (2001) Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med 7:365–368
Scuderi F, Marino M, Colonna L, Mannella F, Evoli A, Provenzano C, Bartoccioni E (2002) Anti-p110 autoantibodies identify a subtype of “seronegative” myasthenia gravis with prominent oculobulbar involvement. Lab Invest 82:1139–1146
McConville J, Farrugia ME, Beeson D, Kishore U, Metcalfe R, Newsom-Davis J, Vincent A (2004) Detection and characterization of MuSK antibodies in seronegative myasthenia gravis. Ann Neurol 55:580–584
Guptill JT, Sanders DB, Evoli A (2011) Anti-musk antibody myasthenia gravis: clinical findings and response to treatment in two large cohorts. Muscle Nerve 44:36–40
Valenzuela DM, Stitt TN, Distefano PS, Rojas E, Mattsson K, Compton DL, Nunez L, Park JS, Stark JL, Gies DR, Thomas S, Le Beau MM, Fernald AA, Copeland NG, Jenkins NA, Burden SJ, Glass DJ, Yancopoulos GD (1995) Receptor tyrosine kinase specific for the skeletal muscle lineage: expression in embryonic muscle, at the neuromuscular junction, and after injury. Neuron 15:573–584
Glass DJ, DeChiara TM, Stitt TN, Distefano PS, Valenzuela DM, Yancopoulos GD (1996) The receptor tyrosine kinase MuSK is required for neuromuscular junction formation and is a functional receptor for agrin. Cold Spring Harb Symp Quant Biol 61:435–444
Apel ED, Glass DJ, Moscoso LM, Yancopoulos GD, Sanes JR (1997) Rapsyn is required for MuSK signaling and recruits synaptic components to a MuSK-containing scaffold. Neuron 18:623–635
Sanders DB, Juel VC (2008) MuSK-antibody positive myasthenia gravis: questions from the clinic. J Neuroimmunol 201–202:85–89
Cenacchi G, Valentina P, Marina F, Elena P, Corrado A (2011) Comparison of muscle ultrastructure in myasthenia gravis with anti-MuSK and anti-AChR antibodies. J Neurol 258:746–752
Benveniste O, Jacobson L, Farrugia ME, Clover L, Vincent A (2005) MuSK antibody positive myasthenia gravis plasma modifies MURF-1 expression in C2C12 cultures and mouse muscle in vivo. J Neuroimmunol 170:41–48
Boneva N, Frenkian-Cuvelier M, Bidault J, Brenner T, Berrih-Aknin S (2006) Major pathogenic effects of anti-MuSK antibodies in myasthenia gravis. J Neuroimmunol 177:119–131
Farrugia ME, Bonifati DM, Clover L, Cossins J, Beeson D, Vincent A (2007) Effect of sera from AChR-antibody negative myasthenia gravis patients on AChR and MuSK in cell cultures. J Neuroimmunol 185:136–144
Vincent A, Leite MI, Farrugia ME, Jacob S, Viegas S, Shiraishi H, Benveniste O, Morgan BP, Hilton-Jones D, Newsom-Davis J, Beeson D, Willcox N (2008) Myasthenia gravis seronegative for acetylcholine receptor antibodies. Ann N Y Acad Sci 1132:84–92
Leite MI, Jacob S, Viegas S, Cossins J, Clover L, Morgan BP, Beeson D, Willcox N, Vincent A (2008) IgG1 antibodies to acetylcholine receptors in ‘seronegative’ myasthenia gravis. Brain 131:1940–1952
Leite MI, Strobel P, Jones M, Micklem K, Moritz R, Gold R, Niks EH, Berrih-Aknin S, Scaravilli F, Canelhas A, Marx A, Newsom-Davis J, Willcox N, Vincent A (2005) Fewer thymic changes in MuSK antibody-positive than in MuSK antibody-negative MG. Ann Neurol 57:444–448
Romi F, Aarli JA, Gilhus NE (2005) Seronegative myasthenia gravis: disease severity and prognosis. Eur J Neurol 12:413–418
Mossman S, Vincent A, Newsom-Davis J (1986) Myasthenia gravis without acetylcholine-receptor antibody: a distinct disease entity. Lancet 1:116–119
Zhang B, Luo S, Wang Q, Suzuki T, Xiong WC, Mei L (2008) LRP4 serves as a coreceptor of agrin. Neuron 60:285–297
Kim N, Stiegler AL, Cameron TO, Hallock PT, Gomez AM, Huang JH, Hubbard SR, Dustin ML, Burden SJ (2008) Lrp4 is a receptor for agrin and forms a complex with MuSK. Cell 135:334–342
Higuchi O, Hamuro J, Motomura M, Yamanashi Y (2011) Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol 69:418–422
Schröder JE, Tegeler MR, Grosshans U, Porten E, Blank M, Lee J, Esapa C, Blake DJ, Kröger S (2007) Dystroglycan regulates structure, proliferation and differentiation of neuroepithelial cells in the developing vertebrate CNS. Dev Biol 307:62–78
Tsen G, Halfter W, Kröger S, Cole GJ (1995) Agrin is a heparan sulfate proteoglycan. J Biol Chem 270:3392–3399
Eusebio A, Oliveri F, Barzaghi P, Ruegg MA (2003) Expression of mouse agrin in normal, denervated and dystrophic muscle. Neuromuscul Disord 13:408–415
Wallace BG (1990) Inhibition of agrin-induced acetylcholine-receptor aggregation by heparin, heparan sulfate, and other polyanions. J Neurosci 10:3576–3582
Gesemann M, Denzer AJ, Ruegg MA (1995) Acetylcholine receptor aggregating activity of agrin isoforms and mapping of the active site. J Cell Biol 128:625–636
Hopf C, Hoch W (1998) Dimerization of the muscle-specific kinase induces tyrosine phosphorylation of acetylcholine receptors and their aggregation on the surface of myotubes. J Biol Chem 273:6467–6473
Yamamoto T, Sato T, Sugita H (1987) Antifilamin, antivinculin, and antitropomyosin antibodies in myasthenia gravis. Neurology 37:1329–1333
Lu CZ, Lu L, Hao ZS, Xia DG, Qain J, Arnason BG (1993) Antibody-secreting cells to acetylcholine receptor and to presynaptic membrane receptor in seronegative myasthenia gravis. J Neuroimmunol 43:145–149
Simon-Chazottes D, Tutois S, Kuehn M, Evans M, Bourgade F, Cook S, Davisson MT, Guenet JL (2006) Mutations in the gene encoding the low-density lipoprotein receptor LRP4 cause abnormal limb development in the mouse. Genomics 87:673–677
Choi HY, Dieckmann M, Herz J, Niemeier A (2009) Lrp4, a novel receptor for Dickkopf 1 and sclerostin, is expressed by osteoblasts and regulates bone growth and turnover in vivo. PLoS One 4:e7930
Karner CM, Dietrich MF, Johnson EB, Kappesser N, Tennert C, Percin F, Wollnik B, Carroll TJ, Herz J (2010) Lrp4 regulates initiation of ureteric budding and is crucial for kidney formation–a mouse model for Cenani-Lenz syndrome. PLoS One 5:e10418
Johnson EB, Hammer RE, Herz J (2005) Abnormal development of the apical ectodermal ridge and polysyndactyly in Megf7-deficient mice. Hum Mol Genet 14:3523–3538
Weatherbee SD, Anderson KV, Niswander LA (2006) LDL-receptor-related protein 4 is crucial for formation of the neuromuscular junction. Development 133:4993–5000
Wu H, Xiong WC, Mei L (2010) To build a synapse: signaling pathways in neuromuscular junction assembly. Development 137:1017–1033
DeChiara TM, Bowen DC, Valenzuela DM, Simmons MV, Poueymirou WT, Thomas S, Kinetz E, Compton DL, Rojas E, Park JS, Smith C, Distefano PS, Glass DJ, Burden SJ, Yancopoulos GD (1996) The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85:501–512
Li Y, Pawlik B, Elcioglu N, Aglan M, Kayserili H, Yigit G, Percin F, Goodman F, Nurnberg G, Cenani A, Urquhart J, Chung BD, Ismail S, Amr K, Aslanger AD, Becker C, Netzer C, Scambler P, Eyaid W, Hamamy H, Clayton-Smith J, Hennekam R, Nurnberg P, Herz J, Temtamy SA, Wollnik B (2010) LRP4 mutations alter Wnt/beta-catenin signaling and cause limb and kidney malformations in Cenani-Lenz syndrome. Am J Hum Genet 86:696–706
Wang WW, Hao HJ, Gao F (2010) Detection of multiple antibodies in myasthenia gravis and its clinical significance. Chin Med J (Engl) 123:2555–2558
Acknowledgments
We would like to thank M. Götz for constant support and encouragement. The help from Lin Mei (Augusta, USA) during early stages of the project is gratefully acknowledged. We thank Thomas Klopstock for providing one additional patient serum for this study. Anti-agrin antibodies were generously provided by M. Rüegg (Basel, Switzerland). Initial support was obtained from the German Society for Muscle Disease (S.K.). A.P. is a stipendiary of the German National Academic Foundation (Studienstiftung des Deutschen Volkes), and N.-C.C. was supported by the AMGEN Foundation.
Conflict of interest
The authors declare that they have no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pevzner, A., Schoser, B., Peters, K. et al. Anti-LRP4 autoantibodies in AChR- and MuSK-antibody-negative myasthenia gravis. J Neurol 259, 427–435 (2012). https://doi.org/10.1007/s00415-011-6194-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00415-011-6194-7