Advertisement

Journal of Neurology

, Volume 259, Issue 1, pp 83–92 | Cite as

Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer’s dementia

  • Mohamed A. Ahmed
  • Esam S. Darwish
  • Eman M. Khedr
  • Yasser M. El serogy
  • Anwer M. Ali
Original Communication

Abstract

The aim of the study was to compare the long-term efficacy of high versus low frequency repetitive transcranial magnetic stimulation (rTMS), applied bilaterally over the dorsolateral prefrontal cortex (DLPFC), on cognitive function and cortical excitability of patients with Alzheimer's disease (AD). Forty-five AD patients were randomly classified into three groups. The first two groups received real rTMS over the DLPFC (20 and 1 Hz, respectively) while the third group received sham stimulation. All patients received one session daily for five consecutive days. In each session, rTMS was applied first over the right DLPFC, immediately followed by rTMS over the left DLPFC. Mini Mental State Examination (MMSE), Instrumental Daily Living Activity (IADL) scale and the Geriatric Depression Scale (GDS) were assessed before, after the last (fifth) session, and then followed up at 1 and 3 months. Neurophysiological evaluations included resting and active motor threshold (rMT and aMT), and the duration of transcallosal inhibition (TI) before and after the end of the treatment sessions. At base line assessment there were no significant differences between groups in any of the rating scales. The high frequency rTMS group improved significantly more than the low frequency and sham groups in all rating scales (MMSE, IADL, and GDS) and at all time points after treatment. Measures of cortical excitability immediately after the last treatment session showed that treatment with 20 Hz rTMS reduced TI duration. These results confirm that five daily sessions of high frequency rTMS over the left and then the right DLPFC improves cognitive function in patients with mild to moderate degree of AD. This improvement was maintained for 3 months. High frequency rTMS may be a useful addition to therapy for the treatment of AD.

Keywords

Repetitive transcranial magnetic stimulation Cortical excitability Cognitive function Alzheimer’s disease 

Notes

Acknowledgments

We are grateful to Dr. John Rothwell (Head of Sobell Research Department of Motor Neuroscience and movement Disorders, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK) for revision of the English style and comments on the manuscript. He is not included as a contributing author.

Conflict of interest

None.

References

  1. 1.
    Burns A, Jacoby R, Levy R (1991) Neurological signs in Alzheimer’s disease. Aging 20:45–51Google Scholar
  2. 2.
    Cabeza R (2002) Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 17:85–100PubMedCrossRefGoogle Scholar
  3. 3.
    Cappa SF, Sandrini M, Rossini PM, Sosta K, Miniussi C (2002) The role of the left frontal lobe in action naming: rTMS evidence. Neurology 59:720–723PubMedGoogle Scholar
  4. 4.
    Cotelli M, Manenti R, Cappa SF et al (2006) Effect of transcranial magnetic stimulation on action naming in patients with Alzheimer disease. Arch Neurol 63:1602–1604PubMedCrossRefGoogle Scholar
  5. 5.
    Cotelli M, Manenti R, Cappa SF, Zanetti O, Miniussi C (2008) Transcranial magnetic stimulation improves naming in Alzheimer disease patients at different stages of cognitive decline. Eur J Neurol 15(12):1286–1292PubMedCrossRefGoogle Scholar
  6. 6.
    Cotelli M, Manenti R, Rosini S, Calabria M, Brambilla M, Bisiacchi PS, Zanetti O, Miniussi C (2010) Action and object naming in physiological aging: an rTMS study. Front Aging Neurosci 2:151PubMedGoogle Scholar
  7. 7.
    Cotelli M, Calabria M, Manenti R, Rosini S, Zanetti O, Cappa SF, Miniussi C (2010b) Improved language performance in Alzheimer disease following brain stimulation. J Neurol Neurosurg Psychiatry Jun 23 (epub ahead of print)Google Scholar
  8. 8.
    Cummings JL, Miller B, Hill MA, Neshkes R (1987) Neuropsychiatric aspects of multi-infarct dementia and dementia of the Alzheimer type. Arch Neurol 44(4):389–393PubMedCrossRefGoogle Scholar
  9. 9.
    D’Esposito M, Zarahn E, Aguirre GK, Rypma B (1999) The effect of normal aging on the coupling of neu-ral activity to the bold hemodynamic response. Neuroimage 10:6–14PubMedCrossRefGoogle Scholar
  10. 10.
    Daskalakis B, Christensen BK, Fitzgerald PB et al (2006) The effects of tepetitive transcranial magnetic stimulation on cortical inhibition in healthy human subjects. Exp Brain Res 174(3):403–412PubMedCrossRefGoogle Scholar
  11. 11.
    Fitzgerald P (2003) Is it time to introduce repetitive transcranial magnetic stimulation into standard clinical practice for the treatment of depressive disorders? Aust N Z J Psychiatry 37:5–11CrossRefGoogle Scholar
  12. 12.
    Fitzgerald PB, Brown TL, Daskalakis ZJ et al (2002) A study of transcallosal inhibition in schizophrenia using transcranial magnetic stimulation. Schizophr Res 56(3):199–209PubMedCrossRefGoogle Scholar
  13. 13.
    Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state: a practical method for grading the cognitive state of patients for the clinician. J Psychiat Res 12:189–198PubMedCrossRefGoogle Scholar
  14. 14.
    Fox K, Glazewski S, Chen CM, Silva A, Li X (1996) Mechanisms underlying experience-dependent potentiation and depression of vibrissae responses in barrel cortex. J Physiol Paris 90(3–4):263–269PubMedCrossRefGoogle Scholar
  15. 15.
    Fregni F, Pascual-Leone A (2005) Repetitive transcranial magnetic stimulation for the treatment of depression. J Psychiatry Neurosci 30(6):434 (author reply 434–435)Google Scholar
  16. 16.
    Geldmacher DS, Whitehouse PJ (1997) Differential diagnosis of Alzheimer’s disease. Neurology 48(S6):S2–S9PubMedGoogle Scholar
  17. 17.
    Grady CL, McIntosh AR, Bookstein F, Horwitz B, Rapoport SI, Haxby JV (1998) Age-related changes in regional cerebral blood flow during working memory for faces. Neuroimage 8:409–425PubMedCrossRefGoogle Scholar
  18. 18.
    Grady CL (2000) Functional brain imaging and age-related changes in cognition. Biol Psychol 54:259–281PubMedCrossRefGoogle Scholar
  19. 19.
    Inghilleri M, Conte A, Frasca V et al (2006) Altered response to rTMS in patients with Alzheimer’s disease. lin Neurophysiol 117(1):103–109CrossRefGoogle Scholar
  20. 20.
    Khedr EM, Ahmed MA, Fathy N, Rothwell JC (2005) Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology 65(3):466–468PubMedCrossRefGoogle Scholar
  21. 21.
    Khedr EM, Etraby AE, Hemeda M, Nasef AM, Razek AA (2010) Long-term effect of repetitive transcranial magnetic stimulation on motor function recovery after acute ischemic stroke. Acta Neurol Scand 121(1):30–37PubMedCrossRefGoogle Scholar
  22. 22.
    Khedr EM, Rothwell JC, Shawky OA, Ahmed MA, Hamdy A (2006) Effect of daily repetitive transcranial magnetic stimulation on motor performance in Parkinson’s disease. Mov Disord 21(12):2201–2205PubMedCrossRefGoogle Scholar
  23. 23.
    Lawton MP, Brody EM (1969) Assessment of older people. Self-maintaining and instrumental activities of daily living. Gerontologist 9:179–186PubMedCrossRefGoogle Scholar
  24. 24.
    Lewis DA, Campbell MJ, Terry RD, Morrison JH (1987) Laminar and regional distributions of neurofibrillary tangles and neuritic plaques in Alzheimer’s disease: a quantitative study of visual and auditory cortices. J Neurosci 7(6):1799–1808PubMedGoogle Scholar
  25. 25.
    Little JT, Kimbrell TA, Wassermann EM, Grafman J, Figueras S, Dunn RT, Danielson A, Repella J, Huggins T, George MS, Post RM (2000) Cognitive effects of 1 and 20 Hz repetitive transcranial magnetic stimulation in depression: preliminary report. Neuropsychiatry Neuropsychol Behav Neurol 13(2):119–124PubMedGoogle Scholar
  26. 26.
    Logan JM, Sanders AL, Snyder AZ, Morris JC, Buckner RL (2002) Under-recruitment and non-selective recruitment: dissociable neural mech-anisms associated with aging. Neuron 33:827–840PubMedCrossRefGoogle Scholar
  27. 27.
    Luber B, Kinnunen LH, Rakitin BC et al (2008) Facilitation of performance in a working memory taskwith rTMS stimulation of the precuneus: frequency- and time-dependent effects. Brain Res 1128:120–129CrossRefGoogle Scholar
  28. 28.
    Maeda F, Keenan JP, Tormos JM et al (2000) Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp Brain Res 133:425–430PubMedCrossRefGoogle Scholar
  29. 29.
    Manenti R, Cotelli M, Miniussi C (2011) Successful physiological aging and episodic memory: a brain stimulation study. Behav Brain Res 216(1):153–158PubMedCrossRefGoogle Scholar
  30. 30.
    Martin PI, Naeser MA, Theoret H, Tormos JM, Nicholas M, Kurland J, Fregni F, Seekins H, Doron K, Pascual-Leone A (2004) Transcranial magnetic stimulation as a complementary treatment for aphasia. Semin Speech Lang 25:181–191PubMedCrossRefGoogle Scholar
  31. 31.
    Martis B, Alam D, Dowd SM, Hill SK, Sharma RP, Rosen C, Pliskin N, Martin E, Carson V, Janicak PG (2003) Neurocognitive effects of repetitive transcranial magnetic stimulation in severe major depression. Clin Neurophysiol 114(6):1125–1132PubMedCrossRefGoogle Scholar
  32. 32.
    McKhann G, Drachman D, Folstein M et al (1994) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944Google Scholar
  33. 33.
    Miniussi C, Cappa SF, Cohen LG, Floel A, Fregni F, Nitsche MA, Oliveri M, Pascual-Leone A, Paulus W, Priori A, Walsh V (2008) Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimul 1(4):326–336 (review)PubMedCrossRefGoogle Scholar
  34. 34.
    Mottaghy FM, Krause BJ, Kemna LJ, Töpper R, Tellmann L, Beu M, Pascual-Leone A, Müller-Gärtner HW (2000) Modulation of the neuronal circuitry subserving working memory in healthy human subjects by repetitive transcranial magnetic stimulation. Neurosci Lett 280(3):167–170PubMedCrossRefGoogle Scholar
  35. 35.
    Naeser MA, Martin PI, Nicholas M, Baker EH, Seekins H, Helm-Estabrooks N, Cayer-Meade C, Kobayashi M, Theoret H, Fregni F, Tormos JM, Kurland J, Doron KW, Pascual-Leone A (2005) Improved naming after TMS treat-ments in a chronic, global aphasia patient—case report. Neurocase 11:182–193PubMedCrossRefGoogle Scholar
  36. 36.
    Naeser MA, Martin PI, Nicholas M, Baker EH, Seekins H, Kobayashi M, Theoret H, Fregni F, Maria-Tormos J, Kurland J, Doron KW, Pascual-Leone A (2005) Improved picture naming in chronic aphasia after TMS to part of right Broca’s area: an open-protocol study. Brain Lang 93:95–105PubMedCrossRefGoogle Scholar
  37. 37.
    Paus T, Castro-Alamancos MA, Petrides M (2001) Cortico-cortical connectivity of the human mid-dorsolateral frontal cortex and its modulation by repetitive transcranial magnetic stimulation. Eur J Neurosci 14(8):1405–1411PubMedCrossRefGoogle Scholar
  38. 38.
    Rektorova I, Megova S, Bares M, Rektor I (2004) Cognitive functioning after repetitive transcranial magnetic stimulation in patients with cerebrovascular disease without dementia: a pilot study of seven patients. J Neurol Sci 229–230:157–61. Epub 2004 Dec 16Google Scholar
  39. 39.
    Rinaldi P, Mecocci P, Benedetti C et al (2003) Validation of the five-item geriatric depression scale in elderly subjects in three different settings. J Am Geriatr Soc 51:694–698PubMedCrossRefGoogle Scholar
  40. 40.
    Rossi S, Hallett M, Rossini PM, Pascual-Leone A (2009) Safety of TMS Consensus Group.Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120(12):2008–2039 (epub 2009 Oct 14 review)PubMedCrossRefGoogle Scholar
  41. 41.
    Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, Dimitrijević MR, Hallett M, Katayama Y, Lücking CH et al (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91(2):79–92 (Review)PubMedCrossRefGoogle Scholar
  42. 42.
    Rozzini L, Costardi D, Chilovi BV, Franzoni S, Trabucchi M, Padovani A (2007) Efficacy of cognitive rehabilitation in patients with mild cognitive impairment treated with cholinesterase inhibitors. Int J Geriatr Psychiatry 22(4):356–360PubMedCrossRefGoogle Scholar
  43. 43.
    Rypma B, D’Esposito M (2000) Isolating the neural mechanisms of age-related changes in human working memory. Nat Neurosci 3:509–515PubMedCrossRefGoogle Scholar
  44. 44.
    Sawaguchi T, Matsumura M, Kubota K (1990) Catecholaminergic effects on neuronal activity related to a delayed response task in monkey prefrontal cortex. J Neurophysiol 63(6):1385–1400PubMedGoogle Scholar
  45. 45.
    Small BJ, Herlitz A, Fratiglioni L et al (1997) Cognitive predictors of incident Alzheimer’s disease: a prospective longitudinal study. Neuropsychology 11:413–420PubMedCrossRefGoogle Scholar
  46. 46.
    Sole-Padulles C, Bartres-Faz D, Junque C et al (2006) Repetitive transcranial magnetic stimulation effects on brain function and cognition among elders with memory dysfunction. A randomized sham controlled study. Cereb Cortex 16(10):1487–1493Google Scholar
  47. 47.
    Stebbins GT, Carrillo MC, Dorfman J, Dirksen C, Desmond JE, Turner DA, Bennett DA, Wilson RS, Glover G, Gabrieli JD (2002) Aging effects on memory encoding in the frontal lobes. Psychol Aging 17(1):44–55PubMedCrossRefGoogle Scholar
  48. 48.
    Strafella AP, Paus T, Barrett J et al (2001) Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci 21(15):RC157PubMedGoogle Scholar
  49. 49.
    Töpper R, Mottaghy FM, Brügmann M, Noth J, Huber W (1998) Facilitation of picture naming by focal transcranial magnetic stimulation of Wernicke’s area. Exp Brain Res 121(4):371–378PubMedCrossRefGoogle Scholar
  50. 50.
    Triggs WJ, McCoy KJ, Greer R, Rossi F, Bowers D, Kortenkamp S, Nadeau SE, Heilman KM, Goodman WK (1999) Effects of left frontal transcranial magnetic stimulation on depressed mood, cognition, and corticomotor threshold. Biol Psychiatry 45(11):1440–1446PubMedCrossRefGoogle Scholar
  51. 51.
    Trojano L, Conson M, Maffei R, Grossi D (2006) Categorical and coordinate spatial processing in the imagery domain investigated by rTMS. Neuropsychologia 44(9):1569–1574 (epub 2006 Mar 9)PubMedCrossRefGoogle Scholar
  52. 52.
    Vanderhasselt MA, De Raedt R, Baeken C, Leyman L, D’haenen H (2006) The influence of rTMS over the left dorsolateral prefrontal cortex on Stroop task performance. Exp Brain Res 169(2):279–282 (epub 2006 Jan 18)Google Scholar
  53. 53.
    Vidovich MR, Shaw J, Flicker L, Almeida OP (2011) Cognitive activity for the treatment of older adults with mild Alzheimer’s disease (AD)–PACE AD: study protocol for a randomised controlled trial. Trials 12:47PubMedCrossRefGoogle Scholar
  54. 54.
    Weiner MF, Edland SD, Luszczynska H (2006) Prevalence and incidence of major depression in Alzheimer’s disease. Am J Psychiatry 151(7):1006–1009Google Scholar
  55. 55.
    Weis S, Jellinger K, Wenger E (2006) Morphometry of the corpus callosum in normal aging and Alzheimer’s disease. J Neural Transm Suppl 33:35–38Google Scholar
  56. 56.
    Wierenga CE, Benjamin M, Gopinath K, Perlstein WM, Leonard CM, Rothi LJ, Conway T, Cato MA, Briggs R, Crosson B (2008) Age-related changes in word retrieval: role of bilateral frontal and subcortical networks. Neurobiol Aging 29(3):436–451PubMedCrossRefGoogle Scholar
  57. 57.
    Yoshii F, Shinohara Y, Duara R (1990) Cerebral white matter bundle alterations in patients with dementia of Alzheimer type and patients with multi-infarct dementia–magnetic resonance imaging study. Clin Neurol 30:110–112Google Scholar
  58. 58.
    Zarkowski P, Navarro R, Pavlicova M, George MS, Avery D (2009) The effect of daily prefrontal repetitive transcranial magnetic stimulation over several weeks on resting motor threshold. Brain Stimul 2(3):163–167PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Mohamed A. Ahmed
    • 1
  • Esam S. Darwish
    • 1
  • Eman M. Khedr
    • 1
    • 2
  • Yasser M. El serogy
    • 1
  • Anwer M. Ali
    • 1
  1. 1.Department of NeuroPsychiatryAssiut University HospitalAssiutEgypt
  2. 2.Department of NeurologyAssiut University HospitalAssiutEgypt

Personalised recommendations