Journal of Neurology

, 258:346 | Cite as

Stem cell-based therapies in Parkinson’s disease: future hope or current treatment option?

Article

Abstract

Parkinson’s disease (PD) is one of the most frequent neurodegenerative diseases and represents a major therapeutic challenge because of the so far missing therapeutic means to influence the ongoing loss of dopaminergic innervation to the striatum. Cell replacement has raised hope to offer the first restorative treatment option. Clinical trials have provided “proof of principle” that transplantation of dopamine-producing neurons into the striatum of PD patients can achieve symptomatic relief given that the striatum is sufficiently re-innervated. Various cell sources have been tested, including fetal ventral midbrain tissue, embryonic stem cells, fetal and adult neural stem cells and, after a ground-breaking discovery, induced pluripotent stem cells. Although embryonic and induced pluripotent stem cells have emerged as the most promising candidates to overcome most of the obstacles to clinical successful cell replacement, each cell source has its unique drawbacks. This review does not only provide a comprehensive overview of the different cellular candidates, including their assets and drawbacks, but also of the various additional issues that need to be addressed in order to convert cellular replacement therapies from an experimental to a clinically relevant therapeutic alternative.

Keywords

Embryonic stem cells Induced pluripotent stem cells Neural stem cells Parkinson’s disease Neurotransplantation Neuroregeneration 

References

  1. 1.
    Alavian KN, Scholz C, Simon HH (2008) Transcriptional regulation of mesencephalic dopaminergic neurons: the full circle of life and death. Mov Disord 23:319–328PubMedCrossRefGoogle Scholar
  2. 2.
    Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335PubMedCrossRefGoogle Scholar
  3. 3.
    Andersson EK, Irvin DK, Ahlsio J, Parmar M (2007) Ngn2 and Nurr1 act in synergy to induce midbrain dopaminergic neurons from expanded neural stem and progenitor cells. Exp Cell Res 313:1172–1180PubMedCrossRefGoogle Scholar
  4. 4.
    Bentlage C, Nikkhah G, Cunningham MG, Bjorklund A (1999) Reformation of the nigrostriatal pathway by fetal dopaminergic micrografts into the substantia nigra is critically dependent on the age of the host. Exp Neurol 159:177–190PubMedCrossRefGoogle Scholar
  5. 5.
    Bjorklund LM, Sanchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS, Brownell AL, Jenkins BG, Wahlestedt C, Kim KS, Isacson O (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA 99:2344–2349PubMedCrossRefGoogle Scholar
  6. 6.
    Borlongan CV, Zhou FC, Hayashi T, Su TP, Hoffer BJ, Wang Y (2001) Involvement of GDNF in neuronal protection against 6-OHDA-induced parkinsonism following intracerebral transplantation of fetal kidney tissues in adult rats. Neurobiol Dis 8:636–646PubMedCrossRefGoogle Scholar
  7. 7.
    Brederlau A, Correia AS, Anisimov SV, Elmi M, Paul G, Roybon L, Morizane A, Bergquist F, Riebe I, Nannmark U, Carta M, Hanse E, Takahashi J, Sasai Y, Funa K, Brundin P, Eriksson PS, Li JY (2006) Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells 24:1433–1440PubMedCrossRefGoogle Scholar
  8. 8.
    Carlsson T, Carta M, Winkler C, Bjorklund A, Kirik D (2007) Serotonin neuron transplants exacerbate L-DOPA-induced dyskinesias in a rat model of Parkinson’s disease. J Neurosci 27:8011–8022PubMedCrossRefGoogle Scholar
  9. 9.
    Carvey PM, Ling ZD, Sortwell CE, Pitzer MR, McGuire SO, Storch A, Collier TJ (2001) A clonal line of mesencephalic progenitor cells converted to dopamine neurons by hematopoietic cytokines: a source of cells for transplantation in Parkinson’s disease. Exp Neurol 171:98–108PubMedCrossRefGoogle Scholar
  10. 10.
    Chiang Y, Morales M, Zhou FC, Borlongan C, Hoffer BJ, Wang Y (2001) Fetal intra-nigral ventral mesencephalon and kidney tissue bridge transplantation restores the nigrostriatal dopamine pathway in hemi-parkinsonian rats. Brain Res 889:200–207PubMedCrossRefGoogle Scholar
  11. 11.
    Chung S, Hedlund E, Hwang M, Kim DW, Shin BS, Hwang DY, Jung Kang U, Isacson O, Kim KS (2005) The homeodomain transcription factor Pitx3 facilitates differentiation of mouse embryonic stem cells into AHD2-expressing dopaminergic neurons. Mol Cell Neurosci 28:241–252PubMedCrossRefGoogle Scholar
  12. 12.
    Chung S, Shin BS, Hedlund E, Pruszak J, Ferree A, Kang UJ, Isacson O, Kim KS (2006) Genetic selection of sox1GFP-expressing neural precursors removes residual tumorigenic pluripotent stem cells and attenuates tumor formation after transplantation. J Neurochem 97:1467–1480PubMedCrossRefGoogle Scholar
  13. 13.
    Chung S, Sonntag KC, Andersson T, Bjorklund LM, Park JJ, Kim DW, Kang UJ, Isacson O, Kim KS (2002) Genetic engineering of mouse embryonic stem cells by Nurr1 enhances differentiation and maturation into dopaminergic neurons. Eur J Neurosci 16:1829–1838PubMedCrossRefGoogle Scholar
  14. 14.
    Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ, Eidelberg D, Fahn S (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 344:710–719PubMedCrossRefGoogle Scholar
  15. 15.
    Freudenberg U, Hermann A, Welzel PB, Stirl K, Schwarz SC, Grimmer M, Zieris A, Panyanuwat W, Zschoche S, Meinhold D, Storch A, Werner C (2009) A star-PEG-heparin hydrogel platform to aid cell replacement therapies for neurodegenerative diseases. Biomaterials 30:5049–5060PubMedCrossRefGoogle Scholar
  16. 16.
    Frielingsdorf H, Schwarz K, Brundin P, Mohapel P (2004) No evidence for new dopaminergic neurons in the adult mammalian substantia nigra. Proc Natl Acad Sci USA 101:10177–10182PubMedCrossRefGoogle Scholar
  17. 17.
    Gage FH, Ray J, Fisher LJ (1995) Isolation, characterization, and use of stem cells from the CNS. Annu Rev Neurosci 18:159–192PubMedCrossRefGoogle Scholar
  18. 18.
    Hagell P, Brundin P (2001) Cell survival and clinical outcome following intrastriatal transplantation in Parkinson disease. J Neuropathol Exp Neurol 60:741–752PubMedGoogle Scholar
  19. 19.
    Hagell P, Piccini P, Bjorklund A, Brundin P, Rehncrona S, Widner H, Crabb L, Pavese N, Oertel WH, Quinn N, Brooks DJ, Lindvall O (2002) Dyskinesias following neural transplantation in Parkinson’s disease. Nat Neurosci 5:627–628PubMedGoogle Scholar
  20. 20.
    Hanna JH, Saha K, Jaenisch R (2010) Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143:508–525PubMedCrossRefGoogle Scholar
  21. 21.
    Hargus G, Cooper O, Deleidi M, Levy A, Lee K, Marlow E, Yow A, Soldner F, Hockemeyer D, Hallett PJ, Osborn T, Jaenisch R, Isacson O (2010) Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci USA 107:15921–15926PubMedCrossRefGoogle Scholar
  22. 22.
    Hermann A, Maisel M, Wegner F, Liebau S, Kim DW, Gerlach M, Schwarz J, Kim KS, Storch A (2006) Multipotent neural stem cells from the adult tegmentum with dopaminergic potential develop essential properties of functional neurons. Stem Cells 24:949–964PubMedCrossRefGoogle Scholar
  23. 23.
    Hermann A, Suess C, Fauser M, Kanzler S, Witt M, Fabel K, Schwarz J, Hoglinger GU, Storch A (2009) Rostro-caudal gradual loss of cellular diversity within the periventricular regions of the ventricular system. Stem Cells 27:928–941PubMedCrossRefGoogle Scholar
  24. 24.
    Horiguchi S, Takahashi J, Kishi Y, Morizane A, Okamoto Y, Koyanagi M, Tsuji M, Tashiro K, Honjo T, Fujii S, Hashimoto N (2004) Neural precursor cells derived from human embryonic brain retain regional specificity. J Neurosci Res 75:817–824PubMedCrossRefGoogle Scholar
  25. 25.
    Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishikawa SI, Sasai Y (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28:31–40PubMedCrossRefGoogle Scholar
  26. 26.
    Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476PubMedCrossRefGoogle Scholar
  27. 27.
    Kim DW, Chung S, Hwang M, Ferree A, Tsai HC, Park JJ, Nam TS, Kang UJ, Isacson O, Kim KS (2006) Stromal cell-derived inducing activity, Nurr1, and signaling molecules synergistically induce dopaminergic neurons from mouse embryonic stem cells. Stem Cells 24:557–567PubMedCrossRefGoogle Scholar
  28. 28.
    Kim JB, Sebastiano V, Wu G, Arauzo-Bravo MJ, Sasse P, Gentile L, Ko K, Ruau D, Ehrich M, van den Boom D, Meyer J, Hubner K, Bernemann C, Ortmeier C, Zenke M, Fleischmann BK, Zaehres H, Scholer HR (2009) Oct4-induced pluripotency in adult neural stem cells. Cell 136:411–419PubMedCrossRefGoogle Scholar
  29. 29.
    Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Arauzo-Bravo MJ, Ruau D, Han DW, Zenke M, Scholer HR (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454:646–650PubMedCrossRefGoogle Scholar
  30. 30.
    Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 18:675–679PubMedCrossRefGoogle Scholar
  31. 31.
    Li M, Pevny L, Lovell-Badge R, Smith A (1998) Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr Biol 8:971–974PubMedCrossRefGoogle Scholar
  32. 32.
    Madsen TM, Treschow A, Bengzon J, Bolwig TG, Lindvall O, Tingstrom A (2000) Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry 47:1043–1049PubMedCrossRefGoogle Scholar
  33. 33.
    Martens DJ, Seaberg RM, van der Kooy D (2002) In vivo infusions of exogenous growth factors into the fourth ventricle of the adult mouse brain increase the proliferation of neural progenitors around the fourth ventricle and the central canal of the spinal cord. Eur J Neurosci 16:1045–1057PubMedCrossRefGoogle Scholar
  34. 34.
    Mukhida K, Hong M, Miles GB, Phillips T, Baghbaderani BA, McLeod M, Kobayashi N, Sen A, Behie LA, Brownstone RM, Mendez I (2008) A multitarget basal ganglia dopaminergic and GABAergic transplantation strategy enhances behavioural recovery in parkinsonian rats. Brain 131:2106–2126PubMedCrossRefGoogle Scholar
  35. 35.
    Nikkhah G, Cunningham MG, Cenci MA, McKay RD, Bjorklund A (1995) Dopaminergic microtransplants into the substantia nigra of neonatal rats with bilateral 6-OHDA lesions. I. Evidence for anatomical reconstruction of the nigrostriatal pathway. J Neurosci 15:3548–3561PubMedGoogle Scholar
  36. 36.
    Nikkhah G, Cunningham MG, McKay R, Bjorklund A (1995) Dopaminergic microtransplants into the substantia nigra of neonatal rats with bilateral 6-OHDA lesions. II. Transplant-induced behavioral recovery. J Neurosci 15:3562–3570PubMedGoogle Scholar
  37. 37.
    O’Keeffe FE, Scott SA, Tyers P, O’Keeffe GW, Dalley JW, Zufferey R, Caldwell MA (2008) Induction of A9 dopaminergic neurons from neural stem cells improves motor function in an animal model of Parkinson’s disease. Brain 131:630–641PubMedCrossRefGoogle Scholar
  38. 38.
    Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, Shannon KM, Nauert GM, Perl DP, Godbold J, Freeman TB (2003) A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 54:403–414PubMedCrossRefGoogle Scholar
  39. 39.
    Ostenfeld T, Joly E, Tai YT, Peters A, Caldwell M, Jauniaux E, Svendsen CN (2002) Regional specification of rodent and human neurospheres. Brain Res Dev Brain Res 134:43–55PubMedCrossRefGoogle Scholar
  40. 40.
    Ostenfeld T, Svendsen CN (2004) Requirement for neurogenesis to proceed through the division of neuronal progenitors following differentiation of epidermal growth factor and fibroblast growth factor-2-responsive human neural stem cells. Stem Cells 22:798–811PubMedCrossRefGoogle Scholar
  41. 41.
    Papanikolaou T, Lennington JB, Betz A, Figueiredo C, Salamone JD, Conover JC (2008) In vitro generation of dopaminergic neurons from adult subventricular zone neural progenitor cells. Stem Cells Dev 17:157–172PubMedCrossRefGoogle Scholar
  42. 42.
    Park CH, Kang JS, Shin YH, Chang MY, Chung S, Koh HC, Zhu MH, Oh SB, Lee YS, Panagiotakos G, Tabar V, Studer L, Lee SH (2006) Acquisition of in vitro and in vivo functionality of Nurr1-induced dopamine neurons. FASEB J 20:2553–2555PubMedCrossRefGoogle Scholar
  43. 43.
    Reubinoff BE, Itsykson P, Turetsky T, Pera MF, Reinhartz E, Itzik A, Ben-Hur T (2001) Neural progenitors from human embryonic stem cells. Nat Biotechnol 19:1134–1140PubMedCrossRefGoogle Scholar
  44. 44.
    Riaz SS, Theofilopoulos S, Jauniaux E, Stern GM, Bradford HF (2004) The differentiation potential of human foetal neuronal progenitor cells in vitro. Brain Res Dev Brain Res 153:39–51PubMedGoogle Scholar
  45. 45.
    Roy NS, Cleren C, Singh SK, Yang L, Beal MF, Goldman SA (2006) Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med 12:1259–1268PubMedCrossRefGoogle Scholar
  46. 46.
    Sanchez-Pernaute R, Lee H, Patterson M, Reske-Nielsen C, Yoshizaki T, Sonntag KC, Studer L, Isacson O (2008) Parthenogenetic dopamine neurons from primate embryonic stem cells restore function in experimental Parkinson’s disease. Brain 131:2127–2139PubMedCrossRefGoogle Scholar
  47. 47.
    Sayles M, Jain M, Barker RA (2004) The cellular repair of the brain in Parkinson’s disease–past, present and future. Transpl Immunol 12:321–342PubMedCrossRefGoogle Scholar
  48. 48.
    Schuldiner M, Itskovitz-Eldor J, Benvenisty N (2003) Selective ablation of human embryonic stem cells expressing a “suicide” gene. Stem Cells 21:257–265PubMedCrossRefGoogle Scholar
  49. 49.
    Schwarz SC, Wittlinger J, Schober R, Storch A, Schwarz J (2006) Transplantation of human neural precursor cells in the 6-OHDA lesioned rats: effect of immunosuppression with cyclosporine A. Parkinsonism Relat Disord 12:302–308PubMedCrossRefGoogle Scholar
  50. 50.
    Shan X, Chi L, Bishop M, Luo C, Lien L, Zhang Z, Liu R (2006) Enhanced de novo neurogenesis and dopaminergic neurogenesis in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease-like mice. Stem Cells 24:1280–1287PubMedCrossRefGoogle Scholar
  51. 51.
    Shi Y, Desponts C, Do JT, Hahm HS, Scholer HR, Ding S (2008) Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3:568–574PubMedCrossRefGoogle Scholar
  52. 52.
    Shim JW, Park CH, Bae YC, Bae JY, Chung S, Chang MY, Koh HC, Lee HS, Hwang SJ, Lee KH, Lee YS, Choi CY, Lee SH (2007) Generation of functional dopamine neurons from neural precursor cells isolated from the subventricular zone and white matter of the adult rat brain using Nurr1 overexpression. Stem Cells 25:1252–1262PubMedCrossRefGoogle Scholar
  53. 53.
    Storch A, Paul G, Csete M, Boehm BO, Carvey PM, Kupsch A, Schwarz J (2001) Long-term proliferation and dopaminergic differentiation of human mesencephalic neural precursor cells. Exp Neurol 170:317–325PubMedCrossRefGoogle Scholar
  54. 54.
    Studer L, Tabar V, McKay RD (1998) Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat Neurosci 1:290–295PubMedCrossRefGoogle Scholar
  55. 55.
    Svendsen CN, Caldwell MA, Shen J, ter Borg MG, Rosser AE, Tyers P, Karmiol S, Dunnett SB (1997) Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson’s disease. Exp Neurol 148:135–146PubMedCrossRefGoogle Scholar
  56. 56.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  57. 57.
    Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630PubMedCrossRefGoogle Scholar
  58. 58.
    Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA 105:5856–5861PubMedCrossRefGoogle Scholar
  59. 59.
    Yang D, Zhang ZJ, Oldenburg M, Ayala M, Zhang SC (2008) Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells 26:55–63PubMedCrossRefGoogle Scholar
  60. 60.
    Yang M, Donaldson AE, Marshall CE, Shen J, Iacovitti L (2004) Studies on the differentiation of dopaminergic traits in human neural progenitor cells in vitro and in vivo. Cell Transplant 13:535–547PubMedCrossRefGoogle Scholar
  61. 61.
    Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19:1129–1133PubMedCrossRefGoogle Scholar
  62. 62.
    Zhao M, Momma S, Delfani K, Carlen M, Cassidy RM, Johansson CB, Brismar H, Shupliakov O, Frisen J, Janson AM (2003) Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci USA 100:7925–7930PubMedCrossRefGoogle Scholar
  63. 63.
    Zhou FC, Chiang YH, Wang Y (1996) Constructing a new nigrostriatal pathway in the Parkinsonian model with bridged neural transplantation in substantia nigra. J Neurosci 16:6965–6974PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of NeurologyDresden University of TechnologyDresdenGermany
  2. 2.CRTD, Center for Regenerative Therapies Dresden, Dresden University of TechnologyDresdenGermany
  3. 3.DZNE, German Center for Neurodegenerative Diseases, Research Site DresdenDresdenGermany

Personalised recommendations