Skip to main content
Log in

Role of sympathetic nervous system in activity-induced cerebral perfusion

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Several studies have suggested that autonomic neural control plays a role in regulation of cerebral blood flow (CBF), although the exact role of the sympathetic nervous system on CBF remains debated. The effects of sympathetic innervation on activity-induced cerebral perfusion changes in humans have not been studied. The aims of this study were therefore (a) to investigate patients with an “intrinsic” sympathetic deficit after stroke and healthy controls with regard to activity-induced cerebral perfusion changes, and (b) to investigate possible differences in functional CBF regulation between the anterior and posterior circulation. Cerebral blood flow velocity in the medial cerebral artery (MCA) and posterior cerebral artery (PCA) was investigated in 21 healthy controls and 17 patients with Wallenberg’s syndrome using transcranial Doppler sonography during cortical activation of MCA and PCA territories, respectively. Patients with a central sympathetic deficit had a prolonged decrease of resistance in the MCA and showed a slower and less pronounced decrease of resistance in the PCA upon cortical activation. No difference was observed between the side with and without sympathetic deficit. Results suggest that (a) sympathetic efferents are involved in economisation of activity-induced changes of cerebral perfusion in the anterior circulation, (b) activity-induced sympathetic regulation of blood flow differs between the anterior and posterior vascular territories in humans and (c) a possible resting sympathetic tonus on extraparenchymal vessel might exist in the posterior circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hilz MJ, Stemper B, Heckmann JG, Neundorfer B (2000) Mechanisms of cerebral autoregulation, assessment and interpretation by means of transcranial Doppler sonography. Fortschr Neurol Psychiatr 68:398–412

    Article  CAS  PubMed  Google Scholar 

  2. Bondar RL, Dunphy PT, Moradshahi P et al (1997) Cerebrovascular and cardiovascular responses to graded tilt in patients with autonomic failure. Stroke 28:1677–1685

    CAS  PubMed  Google Scholar 

  3. Deppe M, Ringelstein EB, Knecht S (2004) The investigation of functional brain lateralization by transcranial Doppler sonography. Neuroimage 21:1124–1146

    Article  PubMed  Google Scholar 

  4. Gupta MM, Bithal PK, Dash HH, Chaturvedi A, Mahajan RP (2005) Effects of stellate ganglion block on cerebral haemodynamics as assessed by transcranial Doppler ultrasonography. Br J Anaesth 95:669–673

    Article  CAS  PubMed  Google Scholar 

  5. Aaslid R (1987) Visually evoked dynamic blood flow response of the human cerebral circulation. Stroke 18:771–775

    CAS  PubMed  Google Scholar 

  6. Urban PP, Allardt A, Tettenborn B, Hopf HC, Pfennigsdorf S, Lieb W (1995) Photoreactive flow changes in the posterior cerebral artery in control subjects and patients with occipital lobe infarction. Stroke 26:1817–1819

    CAS  PubMed  Google Scholar 

  7. Klingelhofer J, Matzander G, Sander D, Schwarze J, Boecker H, Bischoff C (1997) Assessment of functional hemispheric asymmetry by bilateral simultaneous cerebral blood flow velocity monitoring. J Cereb Blood Flow Metab 17:577–585

    Article  CAS  PubMed  Google Scholar 

  8. Harders AG, Laborde G, Droste DW, Rastogi E (1989) Brain activity and blood flow velocity changes: a transcranial Doppler study. Int J Neurosci 47:91–102

    Article  CAS  PubMed  Google Scholar 

  9. Roatta S, Micieli G, Bosone D et al (1998) Effect of generalised sympathetic activation by cold pressor test on cerebral haemodynamics in healthy humans. J Auton Nerv Syst 71:159–166

    Article  CAS  PubMed  Google Scholar 

  10. Zhang R, Zuckerman JH, Iwasaki K, Wilson TE, Crandall CG, Levine BD (2002) Autonomic neural control of dynamic cerebral autoregulation in humans. Circulation 106:1814–1820

    Article  PubMed  Google Scholar 

  11. Micieli G, Tassorelli C, Bosone D, Cavallini A, Viotti E, Nappi G (1994) Intracerebral vascular changes induced by cold pressor test: a model of sympathetic activation. Neurol Res 16:163–167

    CAS  PubMed  Google Scholar 

  12. Hamner JW, Tan CO, Lee K, Cohen MA, Taylor JA (2010) Sympathetic control of the cerebral vasculature in humans. Stroke 41:102–109

    Google Scholar 

  13. Faraci FM, Heistad DD (1990) Regulation of large cerebral arteries and cerebral microvascular pressure. Circ Res 66:8–17

    CAS  PubMed  Google Scholar 

  14. Branston NM (1995) Neurogenic control of the cerebral circulation. Cerebrovasc Brain Metab Rev 7:338–349

    CAS  PubMed  Google Scholar 

  15. Hamel E (2006) Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol 100:1059–1064

    Article  PubMed  Google Scholar 

  16. Panerai RB (2008) Cerebral autoregulation: from models to clinical applications. Cardiovasc Eng 8:42–59

    Article  PubMed  Google Scholar 

  17. van Lieshout JJ, Secher NH (2008) Last Word on Point:Counterpoint: sympathetic activity does/does not influence cerebral blood flow. J Appl Physiol 105:1374

    Article  PubMed  Google Scholar 

  18. Strandgaard S, Sigurdsson ST (2008) Point:Counterpoint: sympathetic activity does/does not influence cerebral blood flow. Counterpoint: sympathetic nerve activity does not influence cerebral blood flow. J Appl Physiol 105:1366–1367 discussion 1367-1368

    Article  PubMed  Google Scholar 

  19. Ogoh S, Brothers RM, Eubank WL, Raven PB (2008) Autonomic neural control of the cerebral vasculature: acute hypotension. Stroke 39:1979–1987

    Article  PubMed  Google Scholar 

  20. Grossi D, Matarese V, Orsini A (1980) Sex differences in adults’ spatial and verbal memory span. Cortex 16:339–340

    CAS  PubMed  Google Scholar 

  21. Goadsby PJ (1999) Autoregulation and autonomic control of the cerebral circulation: implications and pathophysiology. In: Mathias CJ, Bannister SR (eds) Autonomic failure, 4th edn. Oxford Publish Press, New York, pp 85–91

    Google Scholar 

  22. Linden D, Berlit P (1995) Sympathetic skin responses (SSRs) in monofocal brain lesions: topographical aspects of central sympathetic pathways. Acta Neurol Scand 91:372–376

    Article  CAS  PubMed  Google Scholar 

  23. Widenfalk B (1990) A spinal transcommissural connection for symmetrical sympathetic reflex response. Intra-axonal tracing study in the rat. Scand J Plast Reconstr Surg Hand Surg 24:207–212

    Article  CAS  PubMed  Google Scholar 

  24. Pardo JV, Fox PT, Raichle ME (1991) Localization of a human system for sustained attention by positron emission tomography. Nature 349:61–64

    Article  CAS  PubMed  Google Scholar 

  25. Knecht S, Henningsen H, Deppe M, Huber T, Ebner A, Ringelstein EB (1996) Successive activation of both cerebral hemispheres during cued word generation. Neuroreport 7:820–824

    Article  CAS  PubMed  Google Scholar 

  26. Vingerhoets G, Stroobant N (1999) Lateralization of cerebral blood flow velocity changes during cognitive tasks. A simultaneous bilateral transcranial Doppler study. Stroke 30:2152–2158

    CAS  PubMed  Google Scholar 

  27. Droste DW, Harders AG, Rastogi E (1989) A transcranial Doppler study of blood flow velocity in the middle cerebral arteries performed at rest and during mental activities. Stroke 20:1005–1011

    CAS  PubMed  Google Scholar 

  28. Bleys RL, Cowen T, Groen GJ, Hillen B, Ibrahim NB (1996) Perivascular nerves of the human basal cerebral arteries. I. Topographical distribution. J Cereb Blood Flow Metab 16:1034–1047

    Article  CAS  PubMed  Google Scholar 

  29. Umeyama T, Kugimiya T, Ogawa T, Kandori Y, Ishizuka A, Hanaoka K (1995) Changes in cerebral blood flow estimated after stellate ganglion block by single photon emission computed tomography. J Auton Nerv Syst 50:339–346

    Article  CAS  PubMed  Google Scholar 

  30. Lopez-Magana JA, Richards HK, Radolovich DK et al (2009) Critical closing pressure: comparison of three methods. J Cereb Blood Flow Metab 29:987–993

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG Ba 1921/1-1/2) and Pfizer Germany (unrestricted educational grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janne Gierthmühlen.

Additional information

J. Gierthmühlen and A. Allardt contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gierthmühlen, J., Allardt, A., Sawade, M. et al. Role of sympathetic nervous system in activity-induced cerebral perfusion. J Neurol 257, 1798–1805 (2010). https://doi.org/10.1007/s00415-010-5613-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-010-5613-5

Keywords

Navigation