Skip to main content
Log in

Brain involvement in myotonic dystrophies: neuroimaging and neuropsychological comparative study in DM1 and DM2

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The objective of this study was to determine the degree of brain involvement in a cohort of myotonic dystrophy type 1 and type 2 (DM1, DM2) patients by brain studies and functional tests and to compare the results of the two groups. DM1, DM2 are multisystemic disorders due to polynucleotide expansions. Previous studies on brain involvement by neuroimaging and functional methods have led to contradictory results. Fifty molecularly defined DM1 patients and 14 DM2 patients, were recruited for the study. Age at recruitment, age at disease onset, disease duration and educational level were recorded. Neuromuscular assessment was done by MIRS. An extensive neuropsychological battery was performed in 48/50 DM1 and in a control group of 44 healthy matched subjects. Forty six of 50 DM1 and 12/14 DM2 underwent brain MRI; 21/50 DM1 and 9/14 DM2 underwent brain perfusion SPECT, with semiquantitative analysis of the results. MRI images were classified by ARWMC (age-related white matter changes) score, in order to quantify recurrence, localization and patterns of distribution of white matter hyperintense lesions (WMHLs) in our two cohorts. MRI results were matched to SPECT and to neuropsychological results. Thirty-seven of 46 DM1 and 10/12 DM2 had abnormal MRI imaging, showing scattered supratentorial, bilateral, symmetrical focal or diffuse WMHLs. A typical temporo-insular diffuse subcortical pattern was seen in DM1 subjects only, with no correlation with cognitive involvement. Major cognitive involvement was seen in the case of diffuse frontal lesions. A relationship with CTG expansion size was documented for DM1 subjects. SPECT showed minimal hypoperfusion in the posterior cortex planes in DM1 and, to a lesser extent, in DM2. Very mild degrees of involvement in the DM2 cohort were seen. Neuroimaging and functional investigations confirmed a more severe involvement of the brain in DM1 compared to DM2. A temporo-insular diffuse lesional pattern, specific for DM1, was found on MRI. This confirms greater expansion size as a risk factor for more extensive brain involvement in DM1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abe K, Fujimura H, Toyooka K, Yorifuji S, Nishikawa Y, Hazama T, Yanagihara T (1994) Involvement of the central nervous system in myotonic dystrophy. J Neurol Sci 127:179–185

    Article  CAS  PubMed  Google Scholar 

  2. Annane D, Fiorelli M, Mazoyer B, Pappata S, Eymard B, Radvanyi H, Junien C, Fardeau M, Merlet P, Gajdos P, Syrota A, Sansom Y, Duboc D (1998) Impaired cerebral glucose metabolism in myotonic dystrophy: a triplet-size dependent phenomenon. Neuromusc Disord 8:39–45

    Article  CAS  PubMed  Google Scholar 

  3. Antonini G, Mainero C, Romano A, Giubilei F, Ceschin V, Gragnani F, Morino S, Fiorelli M, Soscia F, Di Pasquale A, Caramia F (2004) Cerebral atrophy in myotonic dystrophy: a voxel based morphometric study. J Neurol Neurosurg Psychiatry 75:1611–1613

    Article  CAS  PubMed  Google Scholar 

  4. Bachmann G, Damian MS, Koch M, Schilling G, Fach B, Stöppler S (1996) The clinical and genetic correlates of MRI findings in myotonic dystrophy. Neuroradiology 38:629–635

    Article  CAS  PubMed  Google Scholar 

  5. Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, Hunter K, Stanton VP, Thirion JP, Hudson T et al (1992) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68:799–808

    Article  CAS  PubMed  Google Scholar 

  6. Burgess PW, Gilbert SJ, Dumontheil I (2007) Function and localization within rostral prefrontal cortex (area 10). Philos Trans R Soc Lond B Biol Sci 362:887–899

    Article  PubMed  Google Scholar 

  7. Carter CS, van Veen V (2007) Anterior cingulate cortex and conflict detection: an update of theory and data. Cogn Affect Behav Neurosci 7:367–379

    Article  PubMed  Google Scholar 

  8. Censori B, Provinciali L, Danni M, Chiaramoni L, Maricotti M, Foschi N, Del Pesce M, Salvolini U (1994) Brain involvement in myotonic dystrophy: MRI features and their relationship to clinical and cognitive conditions. Acta Neurol Scand 90:211–217

    Article  CAS  PubMed  Google Scholar 

  9. Chang L, Anderson T, Migneco OA, Boone K, Mehringer CM, Villanueva-Meyer J, Berman N, Mena I (1993) Cerebral abnormalities in myotonic dystrophy. Cerebral blood flow, magnetic resonance imaging, and neuropsychological tests. Arch Neurol 50:917–923

    CAS  PubMed  Google Scholar 

  10. Chang L, Ernst T, Osborn D, Seltzer W, Leonido-Yee M, Poland RE (1998) Proton spectroscopy in myotonic dystrophy: correlations with CTG repeats. Arch Neurol 55:291–293

    Article  Google Scholar 

  11. Charles DP, Browning PG, Gaffan D (2004) Entorhinal cortex contributes to object-in-place scene memory. Eur J Neurosci 20:3157–3164

    Article  PubMed  Google Scholar 

  12. Damian MS, Bachmann G, Koch MC, Schilling G, Stöppler S, Dorndorf W (1994) Brain disease and molecular analysis in myotonic dystrophy. Neuroreport 5:2549–2552

    Article  CAS  PubMed  Google Scholar 

  13. Damian MS, Schilling G, Bachmann G, Simon C, Stöppler S, Dorndorf W (1994) White matter lesions and cognitive deficits: relevance of lesion pattern? Acta Neurol Scand 90:430–436

    Article  CAS  PubMed  Google Scholar 

  14. Day JW, Ranum LP (2005) RNA pathogenesis of the myotonic dystrophies. Neuromusc Disord 15:5–16

    Article  PubMed  Google Scholar 

  15. Di Costanzo A, Di Salle F, Santoro L, Bonavita V, Tedeschi G (2002) Brain MRI features of congenital- and adult-form myotonic dystrophy type 1: case-control study. Neuromusc Disord 12:476–483

    Article  PubMed  Google Scholar 

  16. Di Costanzo A, Di Salle F, Santoro L, Bonavita V, Tedeschi G (2001) Dilated Virchow-Robin spaces in Myotonic Dystrophy: frequency, extent and significance. Eur Neurol 46:131–139

    Article  CAS  PubMed  Google Scholar 

  17. Di Costanzo A, Di Salle F, Santoro L, Bonavita V, Tedeschi G (2001) T2 relaxometry of brain in myotonic dystrophy. Neuroradiology 43:198–204

    Article  CAS  PubMed  Google Scholar 

  18. Di Costanzo A, Di Salle F, Santoro L, Tessitore A, Bonavita V, Tedeschi G (2002) Pattern and significance of white matter abnormalities in myotonic dystrophy type 1: an MRI study. J Neurol 249:1175–1182

    Article  PubMed  Google Scholar 

  19. Di Costanzo A, Santoro L, de Cristofaro M, Manganelli F, Di Salle F, Tedeschi G (2008) Familial aggregation of white matter lesions in myotonic dystrophy type 1. Neuromusc Disord 18:299–305

    Article  PubMed  Google Scholar 

  20. Fiorelli M, Duboc D, Mazoyer BM, Blin J, Eymard B, Fardeau M, Samson Y (1992) Decreased cerebral glucose utilization in myotonic dystrophy. Neurology 42:91–94

    CAS  PubMed  Google Scholar 

  21. Fukuda H, Horiguchi J, Ono C, Ohshita T, Takaba J, Ito K (2005) Diffusion tensor imaging of cerebral white matter in patients with myotonic dystrophy. Acta Radiol 46:104–109

    Article  CAS  PubMed  Google Scholar 

  22. Giorgio A, Dotti MT, Battaglini M, Marino S, Mortilla M, Stromillo ML, Bramanti P, Orrico A, Federico A, De Stefano N (2006) Cortical damage in brains of patients with adult-form of myotonic dystrophy type 1 and no or minimal MRI abnormalities. J Neurol 253:1471–1477

    Article  PubMed  Google Scholar 

  23. Glantz RH, Wright RB, Huckman MS, Garron DC, Siegel IM (1988) Central nervous system magnetic resonance imaging findings in myotonic dystrophy. Arch Neurol 45:36–37

    CAS  PubMed  Google Scholar 

  24. Harris IM, Egan GF, Sonkkila C, Tochon-Danguy HJ, Paxinos G, Watson JD (2000) Selective right parietal lobe activation during mental rotation: a parametric PET study. Brain 123:65–73

    Article  PubMed  Google Scholar 

  25. Hashimoto T, Tayama M, Miyazaki M, Murakawa K, Kawai H, Nishitani H, Kuroda Y (1995) Neuroimaging study of myotonic dystrophy. I. Magnetic resonance imaging of the brain. Brain Dev 17:24–27

    Article  PubMed  Google Scholar 

  26. Hashimoto T, Tayama M, Miyazaki M, Murakawa K, Kawai H, Nishitani H, Kuroda Y (1995) Neuroimaging study of myotonic dystrophy. II. MRI measurements of the brain. Brain Dev 17:24–27

    Article  PubMed  Google Scholar 

  27. Huber SJ, Kissel JT, Shuttleworth EC, Chakeres DW, Clapp LE, Brogan MA (1989) Magnetic resonance imaging and clinical correlates of intellectual impairment in myotonic dystrophy. Arch Neurol 46:536–540

    CAS  PubMed  Google Scholar 

  28. Hund E, Jansen O, Koch MC, Ricker K, Fogel W, Niedermaier N, Otto M, Kuhn E, Meinck HM (1997) Proximal myotonic myopathy with MRI white matter abnormalities of the brain. Neurology 48:33–37

    CAS  PubMed  Google Scholar 

  29. Kassubek J, Juengling FD, Hoffmann S, Rosenbohm A, Kurt A, Jurkat-Rott K, Steinbach P, Wolf M, Ludolph AC, Lehmann-Horn F, Lerche H, Weber YG (2003) Quantification of brain atrophy in patients with myotonic dystrophy and proximal myotonic myopathy: a controlled 3-dimensional magnetic resonance imaging study. Neurosci Lett 348:73–76

    Article  CAS  PubMed  Google Scholar 

  30. Kornblum C, Reul J, Kress W, Grothe C, Amanatidis N, Klockgether T, Schröder R (2004) Cranial magnetic resonance imaging in genetically proven myotonic dystrophy type 1 and 2. J Neurol 251:710–714

    Article  PubMed  Google Scholar 

  31. Kuo HC, Hsiao KM, Chen CJ, Hsieh YC, Huang CC (2005) Brain magnetic resonance image changes in a family with congenital and classic myotonic dystrophy. Brain Dev 27:291–296

    Article  PubMed  Google Scholar 

  32. Kuo HC, Hsieh YC, Wang HM, Chuang WL, Huang CC (2008) Correlation among subcortical white matter lesions, intelligence and CTG repeat expansion in classic myotonic dystrophy type 1. Acta Neurol Scand 117:101–107

    PubMed  Google Scholar 

  33. Liquori CL, Ricker K, Moseley ML, Jacobsen JF, Kress W, Naylor SL, Day JW, Ranum LP (2001) Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293:864–867

    Article  CAS  PubMed  Google Scholar 

  34. Lloyd D (2000) Terra cognita: from functional neuroimaging to the map of the mind. Brain and Mind. 1:1–24

    Article  Google Scholar 

  35. Loessner A, Alavi A, Lewandrowski KU, Mozley D, Souder E, Gur RE (1995) Regional cerebral function determined by FDG-PET in healthy volunteers: normal patterns and changes with age. J Nucl Med 36:1141–1149

    CAS  PubMed  Google Scholar 

  36. Marklund P, Fransson P, Cabeza R, Petersson KM, Ingvar M, Nyberg L (2007) Sustained and transient neural modulations in prefrontal cortex related to declarative long-term memory, working memory, and attention. Cortex 43:22–37

    Article  PubMed  Google Scholar 

  37. Martinello F, Piazza A, Pastorello E, Angelini C, Trevisan CP (1999) Clinical and neuroimaging study of central nervous system in congenital myotonic dystrophy. J Neurol 246:186–192

    Article  CAS  PubMed  Google Scholar 

  38. Mathieu J, Boivin H, Meunier D, Gaudreault M, Bégin P (2001) Assessment of a disease-specific muscular impairment rating scale in myotonic dystrophy. Neurology 56:336–340

    CAS  PubMed  Google Scholar 

  39. Meola G, Sansone V, Perani D, Colleluori A, Cappa S, Cotelli M, Fazio F, Thornton CA, Moxley RT (1999) Reduced cerebral blood flow and impaired visual-spatial function in proximal myotonic myopathy. Neurology 53:1042–1050

    CAS  PubMed  Google Scholar 

  40. Meola G, Sansone V, Perani D, Scarone S, Cappa S, Dragoni C, Cattaneo E, Cotelli M, Gobbo C, Fazio F, Siciliano G, Mancuso M, Vitelli E, Zhang S, Krahe R, Moxley RT (2003) Executive dysfunction and avoidant personality trait in myotonic dystrophy type 1 (DM-1) and in proximal myotonic myopathy (PROMM/DM-2). Neuromusc Disord 13:813–821

    Article  CAS  PubMed  Google Scholar 

  41. Meola G, Sansone V (2007) Cerebral involvement in myotonic dystrophies. Muscle Nerve 36:294–306

    Article  CAS  PubMed  Google Scholar 

  42. Miaux Y, Chiras J, Eymard B, Lauriot-Prevost MC, Radvanyi H, Martin-Duverneuil N, Delaporte C (1997) Cranial MRI findings in myotonic dystrophy. Neuroradiology 39:166–170

    Article  CAS  PubMed  Google Scholar 

  43. Mielke R, Herholz K, Fink G, Ritter D, Heiss WD (1993) Positron emission tomography in myotonic dystrophy. Psychiatry Res 50:93–99

    Article  CAS  PubMed  Google Scholar 

  44. Noulhiane M, Piolino P, Hasboun D, Clemenceau S, Baulac M, Samson S (2007) Autobiographical memory after temporal lobe resection: neuropsychological and MRI volumetric findings. Brain 130:3184–3199

    Article  CAS  PubMed  Google Scholar 

  45. Ogata A, Terae S, Fujita M, Tashiro K (1998) Anterior temporal white matter lesions in myotonic dystrophy with intellectual impairment: an MRI and neuropathological study. Neuroradiology 40:411–415

    Article  CAS  PubMed  Google Scholar 

  46. Okuda J, Fujii T, Ohtake H, Tsukiura T, Yamadori A, Frith CD, Burgess PW (2007) Differential involvement of regions of rostral prefrontal cortex (Brodmann area 10) in time- and event-based prospective memory. Int J Psychophysiol 64:233–246

    Article  PubMed  Google Scholar 

  47. Ota M, Sato N, Ohya Y, Aoki Y, Mizukami K, Mori T, Asada T (2006) Relationship between diffusion tensor imaging and brain morphology in patients with myotonic dystrophy. Neurosci Lett 407:234–239

    Article  CAS  PubMed  Google Scholar 

  48. Ranganath C, Johnson MK, D’Esposito M (2003) Prefrontal activity associated with working memory and episodic long-term memory. Neuropsychologia 41:378–389

    Article  PubMed  Google Scholar 

  49. Ranum LP, Rasmussen PF, Benzow KA, Koob MD, Day JW (1998) Genetic mapping of a second myotonic dystrophy locus. Nat Genet 19:196–198

    Article  CAS  PubMed  Google Scholar 

  50. Ricker K, Koch MC, Lehmann-Horn F, Pongratz D, Otto M, Heine R, Moxley RT 3rd (1994) Proximal myotonic myopathy: a new dominant disorder with myotonia, muscle weakness, and cataracts. Neurology 44:1448–1452

    CAS  PubMed  Google Scholar 

  51. Siciliano G, Manca M, Gennarelli M, Angelini C, Rocchi A, Iudice A, Miorin M, Mostacciuolo M (2001) Epidemiology of myotonic dystrophy in Italy: re-apprisal after genetic diagnosis. Clin Genet 59:344–349

    Article  CAS  PubMed  Google Scholar 

  52. Sinforiani E, Sandrini G, Martelli A, Mauri M, Uggetti C, Bono G, Nappi G (1991) Cognitive and neuroradiological findings in myotonic dystrophy. Funct Neurol 6:377–384

    CAS  PubMed  Google Scholar 

  53. The International Myotonic Dystrophy Consortium (IDMC) (2000) New nomenclature and DNA testing guidelines for myotonic dystrophy type 1 (DM1). Neurology 54:1218–1221

    Google Scholar 

  54. Thornton CA, Griggs RC, Moxley RT 3rd (1994) Myotonic dystrophy with no trinucleotide repeat expansion. Ann Neurol 35:269–272

    Article  CAS  PubMed  Google Scholar 

  55. Udd B, Krahe R, Wallgren–Pettersson C, Falck B, Kalimo H (1997) Proximal myotonic dystrophy––a family with autosomal dominant muscular dystrophy, cataracts, hearing loss and hypogonadism: heterogeneity of proximal myotonic syndromes? Neuromusc Disord 7:217–228

    Article  CAS  PubMed  Google Scholar 

  56. Van Laere K, Versijpt J, Audenaert K, Koole M, Goethals I, Achten E, Dierckx R (2001) 99mTc-ECD brain perfusion SPET: variability, asymmetry and effects of age and gender in healthy adults. Eur J Nucl Med 28:873–887

    Article  PubMed  Google Scholar 

  57. Van Laere KJ, Dierckx RA (2001) Brain perfusion SPECT: age- and sex-related effects correlated with voxel-based morphometric findings in healthy adults. Radiology 221:810–817

    Article  PubMed  Google Scholar 

  58. Vielhaber S, Jakubiczka S, Gaul C, Schoenfeld MA, Debska-Vielhaber G, Zierz S, Heinze HJ, Niessen HG, Kaufmann J (2006) Brain 1H magnetic resonance spectroscopic differences in myotonic dystrophy type 2 and type 1. Muscle Nerve 34:145–152

    Article  CAS  PubMed  Google Scholar 

  59. Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjögren M, Wallin A, Ader H, Leys D, Pantoni L, Pasquier F, Erkinjuntti T, Scheltens P (2001) A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke 32:1318–1322

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Romeo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table 1 (XLS 36.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romeo, V., Pegoraro, E., Ferrati, C. et al. Brain involvement in myotonic dystrophies: neuroimaging and neuropsychological comparative study in DM1 and DM2. J Neurol 257, 1246–1255 (2010). https://doi.org/10.1007/s00415-010-5498-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-010-5498-3

Keywords

Navigation