Skip to main content

Advertisement

Log in

Enhanced muscle shortening and impaired Ca2+ channel function in an acute septic myopathy model

  • Original Paper
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Myopathies in critically ill patients are increasingly documented. Various animal models of chronic sepsis have been employed to investigate reduced membrane excitability or altered isometric contractility of skeletal muscle. In contrast, immediate changes occurring during acute sepsis are significantly under-characterised; L-type Ca2+ channel function or isotonic shortening are examples. We recorded slowly activating L-type Ca2+ currents (I Ca) in voltage-clamped single intact mouse skeletal muscle fibres and tested the effects of acute challenge with serum fractions from critical illness myopathy patients (CIM). Using a high-speed camera system, we simultaneously recorded unloaded fibre shortening during isotonic contractions with unprecedented temporal resolution (~1,600 frames/s). Time courses of fibre lengths and shortening velocity were determined from automated imaging algorithms. CIM fractions acutely induced depression of I Ca amplitudes with no shifts in I CaV-relations. Voltage-dependent inactivation was unaltered and I Ca activation and inactivation kinetics were prolonged compared to controls. Unexpectedly, maximum unloaded speed of shortening was slightly faster following CIM serum applications, suggesting a direct action of CIM serum on weak-binding-state cross-bridges. Our results are compatible with a model where CIM serum might acutely reduce a fraction of functional L-type Ca2+ channels and could account for reduced SR Ca2+ release and force production in CIM patients. Acute increase in isotonic shortening velocity might be an early diagnostic feature suitable for testing in clinical studies. The acute challenge model is also robust against atrophy or fibre type changes that ordinarily would have to be considered in chronic sepsis models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CIM:

Critical illness myopathy

CS:

Control sera

I Ca :

L-type Ca2+ current

DHPR:

Dihydropyridine receptor

MWCO:

Molecular weight cut-off

RyR:

Ryanodine receptor

SR:

Sarcoplasmic reticulum

τdec I Ca :

Inactivation time constant

TTP I Ca :

Time-to-peak

v u :

Unloaded shortening speed

References

  1. Friedrich O (2008) Critical illness myopathy: sepsis-mediated failure of the peripheral nervous system. Eur J Anaesthesiol 25(suppl 42):73–82

    Article  CAS  Google Scholar 

  2. Latronico N, Shehu I, Seghelini E (2005) Neuromuscular sequelae of critical illness. Curr Opin Crit Care 11:381–390

    Article  PubMed  Google Scholar 

  3. Bolton CF (2005) Neuromuscular manifestations of critical illness. Muscle Nerve 32:140–163

    Article  PubMed  Google Scholar 

  4. Khan J, Harrison TB, Rich MM, Moss M (2006) Early development of critical illness myopathy and neuropathy in patients with severe sepsis. Neurology 67:1421–1425

    Article  PubMed  Google Scholar 

  5. Bednarik J, Lukas Z, Vondracek P (2003) Critical illness polyneuromyopathy: the electrophysiological components of a complex entity. Intensive Care Med 29:1505–1514

    Article  PubMed  Google Scholar 

  6. Lefaucheur JP, Nordine T, Rodriguez P, Brochard L (2006) Origin of ICU acquired paresis determined by direct muscle stimulation. J Neurol Neurosurg Psychiatry 77(4):500–506

    Article  PubMed  Google Scholar 

  7. Kerbaul F, Brousse M, Collart F, Pellissier JF, Planche D, Fernandez C, Gouin F, Guidon C (2005) Combination of histopathological and electromyographic patterns can help to evaluate functional outcome of critically ill patients with neuromuscular weakness syndromes. Crit Care 8:R358–R366

    Article  Google Scholar 

  8. Rich MM, Bird SJ, Raps EC, McCluskey LF, Teener JW (1997) Direct muscle stimulation in acute quadriplegic myopathy. Muscle Nerve 20:665–673

    Article  CAS  PubMed  Google Scholar 

  9. Sander HW, Golden M, Danon MJ (2002) Quadriplegic areflexic ICU illness: selective thick filament loss and normal nerve histology. Muscle Nerve 26:499–505

    Article  PubMed  Google Scholar 

  10. Rossignol B, Gueret G, Pennec JP, Morel J, Rannou F, Giroux-Metges MA, Talarmin H, Arvieux CC (2008) Effects of chronic sepsis on contractile properties of fast-twitch muscle in an experimental model of critical illness neuromyopathy in the rat. Crit Care Med 36(6):1855–1863

    Article  PubMed  Google Scholar 

  11. Eikermann M, Koch G, Gerwig M, Ochterbeck C, Beiderlinden M, Koeppen S, Neuhäuser M, Peters J (2006) Muscle force and fatigue in patients with sepsis and multiorgan failure. Intensive Care Med 32:251–259

    Article  CAS  PubMed  Google Scholar 

  12. Horinouchi H, Kumamoto T, Kimura N, Ueyama H, Tsuda T (2005) Myosin loss in denervated rat soleus muscle after dexamethasone treatment. Pathobiology 72(3):108–116

    Article  CAS  PubMed  Google Scholar 

  13. Rich MM, Pinter MJ (2003) Crucial role of sodium channel fast inactivation in muscle fibre inexcitability in a rat model of critical illness myopathy. J Physiol 547.2:555–566

    Article  Google Scholar 

  14. Murray MJ, Brull SJ, Bolton CF (2006) Brief review: nondepolarizing neuromuscular blocking drugs and critical illness myopathy. Can J Anesth 53(11):1148–1156

    Article  PubMed  Google Scholar 

  15. Zink W, Kaess M, Hofer S, Plachky J, Zausig YA, Sinner B, Weigand MA, Fink RH, Graf BM (2008) Alterations in intracellular Ca2+-homeostasis of skeletal muscle fibers during sepsis. Crit Care Med 36(5):1559–1563

    Article  CAS  PubMed  Google Scholar 

  16. Berchtold MW, Brinkmeier H, Müntener M (2000) Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity and disease. Physiol Rev 80(3):1215–1265

    CAS  PubMed  Google Scholar 

  17. Stehle R, Brenner B (2000) Cross-bridge attachment during high-speed active shortening of skinned fibers of the rabbit psoas muscle: implications for cross-bridge action during maximum velocity of filament sliding. Biophys J 78:1458–1473

    Article  CAS  PubMed  Google Scholar 

  18. Stamler JS, Meissner G (2001) Physiology of nitric oxide in skeletal muscle. Physiol Rev 81(1):209–237

    CAS  PubMed  Google Scholar 

  19. Friedrich O, Hund E, Weber C, Hacke W, Fink RHA (2004) Critical illness myopathy serum fractions affect membrane excitability and intracellular calcium release in mammalian skeletal muscle. J Neurol 251:53–65

    Article  CAS  PubMed  Google Scholar 

  20. Bannister RA, Pessah IN, Beam KG (2008) The skeletal L-type Ca2+ current is a major contributor to excitation-coupled Ca2+ entry. J Gen Physiol 133(1):79–91

    Article  Google Scholar 

  21. Kurebayashi N, Ogawa Y (2001) Depletion of Ca2+ in the sarcoplasmic reticulum stimulates Ca2+ entry in mouse skeletal muscle fibres. J Physiol 533:185–199

    Article  CAS  PubMed  Google Scholar 

  22. Lacomis D, Zochodne DW, Bird SJ (2000) Critical illness myopathy (editorial). Muscle Nerve 23:1785–1788

    Article  CAS  PubMed  Google Scholar 

  23. Friedrich O, Ehmer T, Fink RHA (1999) Calcium currents during contraction and shortening in enzymatically isolated murine skeletal muscle fibres. J Physiol 517(Pt 3):757–775

    Article  CAS  PubMed  Google Scholar 

  24. Friedrich O, Weber C, von Wegner F, Chamberlain JS, Fink RHA (2008) Unloaded speed of shortening in voltage-clamped intact skeletal muscle fibers from wt, mdx and transgenic minidystrophin mice using a novel high-speed acquisition system. Biophys J 94:4751–4765

    Article  CAS  PubMed  Google Scholar 

  25. Friedrich O, Kress KR, Hartmann M, Frey B, Sommer K, Ludwig H, Fink RHA (2006) Prolonged high-pressure treatments in mammalian skeletal muscle result in loss of functional sodium channels and altered calcium channel kinetics. Cell Biochem Biophys 45(1):71–83

    Article  CAS  PubMed  Google Scholar 

  26. Friedrich O, Both M, Gillis JM, Chamberlain JS, Fink RHA (2004) Mini-dystrophin restores L-type calcium currents in skeletal muscle of transgenic mdx mice. J Physiol 555.1:251–265

    Google Scholar 

  27. Rossignol B, Gueret G, Pennec JP, Morel J, Giroux-Metges MA, Talarmin H, Arvieux CC (2007) Effects of chronic sepsis on the voltage-gated sodium channel in isolated rat muscle fibers. Crit Care Med 35:351–357

    Article  CAS  PubMed  Google Scholar 

  28. Williams AB, Decourten-Myers GM, Fischer JE, Luo G, Sun X, Hasselgren PO (1999) Sepsis stimulates release of myofilaments in skeletal muscle by a calcium-dependent mechanism. FASEB J 13:1435–1443

    CAS  PubMed  Google Scholar 

  29. Combaret L, Tilignac T, Claustre A, Voisin L, Taillandier D, Obled C, Tanaka K, Attaix D (2002) Torbafylline (HWA 448) inhibits enhanced skeletal muscle ubitquitin–proteasome-dependent proteolysis in cancer and septic rats. Biochem J 361:185–192

    Article  CAS  PubMed  Google Scholar 

  30. Friedrich O, Hund E, Hacke W, Fink RHA (2004) Critical illness myopathy (CIM): evidence for a myotoxic low-molecular weight factor in the serum of patients after severe SIRS. In: Faist E (ed) Proceedings of the 6th world congress on trauma, shock, inflammation and sepsis pathophysiology, immune consequences and therapy. Medimond International Proceeding, pp 269–272

  31. Li H, Malhotra S, Kumar A (2008) Nuclear factor-kappa B signalling in skeletal muscle atrophy. J Mol Med 86(10):1113–1126

    Article  CAS  PubMed  Google Scholar 

  32. Toniolo L, Maccatrozzo L, Patruno M, Pavan E, Caliaro F, Rossi R, Rinaldi C, Canepari M, Reggiani C, Mascarello F (2007) Fiber types in canine muscles: myosin isoform expression and functional characterization. Am J Physiol Cell Physiol 292:C1915–C1926

    Article  CAS  PubMed  Google Scholar 

  33. Salanova M, Schiffl G, Püttmann B, Schoser BG, Blottner D (2008) Molecular biomarkers monitoring human skeletal muscle fibres and microvasculature following long-term bed rest with and without countermeasures. J Anat 212:306–318

    Article  CAS  PubMed  Google Scholar 

  34. Fraysse B, Desaphy JF, Pierno S, De Luca A, Liantonio A, Mitolo CI, Camerino DC (2003) Decrease in resting calcium and entry associated with slow-to-fast transition in unloaded rat soleus muscle. FASEB J 17(13):1916–1918

    CAS  PubMed  Google Scholar 

  35. Diaz NL, Finol HJ, Torres SH, Zambrano CI, Adjounian H (1998) Histochemical and ultrastructural study of skeletal muscle in patients with sepsis and multiple organ failure syndrome (MOFS). Histol Histopathol 13(1):121–128

    CAS  PubMed  Google Scholar 

  36. Haarmann CS, Dulhunty A, Laver DR (2005) Regulation of skeletal ryanodine receptors by dihydropyridine receptor II–III loop C-region peptides: relief of Mg2+ inhibition. Biochem J 387:429–436

    Article  CAS  PubMed  Google Scholar 

  37. Zucchi R, Ronca-Testoni S (1997) The sarcoplasmic reticulum Ca2+ channel/ryanodine receptor: modulation by endogenous effectors, drugs and disease states. Pharmacol Rev 49(1):1–51

    CAS  PubMed  Google Scholar 

  38. Garcia MC, Faria JM, Escamilla J, Sanchez-Armass S, Sanchez JA (1999) A long-term blockade of L-type calcium currents upregulates the number of Ca2+ channels in skeletal muscle. J Membr Biol 168:141–148

    Article  CAS  PubMed  Google Scholar 

  39. Brown LD, Rodney GG, Hernandez-Ochoa E, Ward CW, Schneider MF (2007) Ca2+ sparks and T tubule reorganization in dedifferentiating adult mouse skeletal muscle fibers. Am J Physiol Cell Physiol 92:C1156–C1166

    Google Scholar 

  40. Pedersen BK, Steensberg A, Schjerling P (2001) Muscle-derived inteleukin-6: possible biological effects. J Physiol 536.2:329–337

    Article  Google Scholar 

  41. Joulin O, Petillot P, Labalette M, Lancel S, Neviere R (2007) Cytokine profile of human septic shock serum inducing cardiomyocyte contractile dysfunction. Physiol Res 56:291–297

    CAS  PubMed  Google Scholar 

  42. Li XQ, Zhao MG, Mei QB, Zhang YF, Cao W, Wang HF, Chen D, Cui Y (2003) Effects of tumor necrosis factor-alpha on calcium movement in rat ventricular myocytes. Acta Pharmacol Sin 24(12):1224–1230

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Faculty Grant from the Medical Faculty of the Ruprecht-Karls-University (F.203694) and through an Australian Research Council International Fellowship (ARCIF) awarded to one of the authors (OF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Friedrich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(AVI 3092 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedrich, O., Hund, E. & von Wegner, F. Enhanced muscle shortening and impaired Ca2+ channel function in an acute septic myopathy model. J Neurol 257, 546–555 (2010). https://doi.org/10.1007/s00415-009-5362-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-009-5362-5

Keywords

Navigation