Skip to main content

Advertisement

Log in

Quantitative proton magnetic resonance spectroscopy detects abnormalities in dorsolateral prefrontal cortex and motor cortex of patients with frontotemporal lobar degeneration

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Frontotemporal lobar degeneration (FTLD) is a neurodegenerative disease of the frontal and temporal neocortex. The single most common pathology underlying FTLD is neuronal degeneration with ubiquitin-positive but tau-negative inclusions consisting of Tar DNA binding proteins (TDP-43). Inclusions containing TDP-43 in neurons are also the most common pathology underlying motor neuron disease (MND). The present study tested the hypothesis that abnormal metabolite patterns within the dorsolateral prefrontal cortex (DLPFC) as well as the motor cortex (MC) may be observed in FTLD patients without motor disorders, using proton magnetic resonance spectroscopy (1H MRS). Twenty-six FTLD patients with cognitive damage and ten controls underwent multivoxel 1H MRS. Absolute concentrations of N-acetyl aspartate (NAA), creatine (Cr), choline (Cho) and myo-inositol (mI) were measured from the DLPFC, the MC and the parietal cortex (PC, an internal control). Statistical analyses were performed for group differences between FTLD patients and controls. Comparisons were also made across brain regions (PC and DLPFC; PC and MC) within FTLD patients. Significant reductions in NAA and Cr along with increased Cho and mI were observed in the DLPFC of FTLD patients compared to controls. Significantly lower NAA and higher Cho were also observed in the MCs of patients as compared to controls. Within the FTLD patients, both the MC and the DLPFC exhibited significantly decreased NAA and elevated Cho compared to the PC. However, only the DLPFC had significantly lower Cr and higher mI. Abnormal metabolite pattern from the MC supports the hypothesis that FTLD and MND may be closely linked.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bigio EH, Lipton AM, White CL 3rd, Dickson DW, Hirano A (2003) Frontotemporal and motor neurone degeneration with neurofilament inclusion bodies: additional evidence for overlap between FTD and ALS. Neuropathol Appl Neurobiol 29:239–253. doi:10.1046/j.1365-2990.2003.00466.x

    Article  CAS  PubMed  Google Scholar 

  2. Blumenfeld RS, Ranganath C (2006) Dorsolateral prefrontal cortex promotes long-term memory formation through its role in working memory organization. J Neurosci 26:916–925. doi:10.1523/JNEUROSCI.2353-05.2006

    Article  CAS  PubMed  Google Scholar 

  3. Bowen BC, Pattany PM, Bradley WG, Murdoch JB, Rotta F, Younis AA, Duncan RC, Quencer RM (2000) MR imaging and localized proton spectroscopy of the precentral gyrus in amyotrophic lateral sclerosis. Am J Neuroradiol 21:647–658

    CAS  PubMed  Google Scholar 

  4. Brand A, Richter-Landsberg C, Leibfritz D (1993) Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci 15:289–298. doi:10.1159/000111347

    Article  CAS  PubMed  Google Scholar 

  5. Chan S, Shungu DC, Douglas-Akinwande A, Lange DJ, Rowland LP (1999) Motor neuron diseases: comparison of single-voxel proton MR spectroscopy of the motor cortex with MR imaging of the brain. Radiology 212:763–769

    CAS  PubMed  Google Scholar 

  6. Chang L, Cornford M, Miller BL, Itabashi H, Mena I (1995) Neuronal ultrastructural abnormalities in a patient with frontotemporal dementia and motor neuron disease. Dementia 6:1–8. doi:10.1159/000106915

    CAS  PubMed  Google Scholar 

  7. Cordery RJ, MacManus D, Godbolt A, Rossor MN, Waldman AD (2006) Short TE quantitative proton magnetic resonance spectroscopy in variant Creutzfeldt-Jakob disease. Eur Radiol 16:1692–1698. doi:10.1007/s00330-005-0090-4

    Article  CAS  PubMed  Google Scholar 

  8. Coulthard E, Firbank M, English P, Welch J, Birchall D, O’Brien J, Griffiths TD (2006) Proton magnetic resonance spectroscopy in frontotemporal dementia. J Neurol 253:861–868. doi:10.1007/s00415-006-0045-y

    Article  CAS  PubMed  Google Scholar 

  9. Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J (1994) The neuropsychiatric inventory: comprehensive assessment of psychopathology in dementia. Neurology 44:2308–2314

    CAS  PubMed  Google Scholar 

  10. Ebel A, Soher BJ, Maudsley AA (2001) Assessment of 3D proton MR echo-planar spectroscopic imaging using automated spectral analysis. Magn Reson Med 46:1072–1078. doi:10.1002/mrm.1301

    Article  CAS  PubMed  Google Scholar 

  11. Ernst T, Chang L, Melchor R, Mehringer CM (1997) Frontotemporal dementia and early Alzheimer disease: differentiation with frontal lobe H-1 MR spectroscopy. Radiology 203:829–836

    CAS  PubMed  Google Scholar 

  12. Forman MS, Farmer J, Johnson JK, Clark CM, Arnold SE, Coslett HB, Chatterjee A, Hurtig HI, Karlawish JH, Rosen HJ, Van Deerlin V, Lee VM, Miller BL, Trojanowski JQ, Grossman M (2006) Frontotemporal dementia: clinicopathological correlations. Ann Neurol 59:952–962. doi:10.1002/ana.20873

    Article  PubMed  Google Scholar 

  13. Gerloff C, Corwell B, Chen R, Hallett M, Cohen LG (1998) The role of the human motor cortex in the control of complex and simple finger movement sequences. Brain 121:1695–1709. doi:10.1093/brain/121.9.1695

    Article  PubMed  Google Scholar 

  14. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Rapoport JL (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863. doi:10.1038/13158

    Article  CAS  PubMed  Google Scholar 

  15. Griffith HR, den Hollander JA, Okonkwo OC, O’Brien T, Watts RL, Marson DC (2008) Brain metabolism differs in Alzheimer’s disease and Parkinson’s disease dementia. Alzheimers Dement 4:421–427. doi:10.1016/j.jalz.2008.04.008

    Article  CAS  PubMed  Google Scholar 

  16. Grosskreutz J, Kaufmann J, Frädrich J, Dengler R, Heinze HJ, Peschel T (2006) Widespread sensorimotor and frontal cortical atrophy in amyotrophic lateral sclerosis. BMC Neurol 25:6–17

    Google Scholar 

  17. Grossman M (2002) Frontotemporal dementia: a review. J Int Neuropsychol Soc 8:566–583. doi:10.1017/S1355617702814357

    Article  PubMed  Google Scholar 

  18. Grossman M, Libon DJ, Forman MS, Massimo L, Wood E, Moore P, Anderson C, Farmer J, Chatterjee A, Clark CM, Coslett HB, Hurtig HI, Lee VM, Trojanowski JQ (2007) Distinct antemortem profiles in patients with pathologically defined frontotemporal dementia. Arch Neurol 64:1601–1609. doi:10.1001/archneur.64.11.1601

    Article  PubMed  Google Scholar 

  19. Grossman M, Xie SX, Libon DJ, Wang X, Massimo L, Moore P, Vesely L, Berkowitz R, Chatterjee A, Coslett HB, Hurtig HI, Forman MS, Lee VM, Trojanowski JQ (2008) Longitudinal decline in autopsy-defined frontotemporal lobar degeneration. Neurology 70:2036–2045. doi:10.1212/01.wnl.0000303816.25065.bc

    Article  CAS  PubMed  Google Scholar 

  20. Guedj E, Le Ber I, Lacomblez L, Dubois B, Verpillat P, Didic M, Salachas F, Vera P, Hannequin D, Lotterie JA, Puel M, Decousus M, Thomas-Antérion C, Magne C, Vercelletto M, Bernard AM, Golfier V, Pasquier J, Michel BF, Namer I, Sellal F, Bochet J, Volteau M, Brice A, Meininger V, French RESEARCH NETWORK on FTD/FTD-MND, Habert MO (2007) Brain SPECT perfusion of frontotemporal dementia associated with motor neuron disease. Neurology 69:488–490. doi:10.1212/01.wnl.0000266638.53185.e7

    Article  CAS  PubMed  Google Scholar 

  21. Hodges JR, Miller B (2001) The classification, genetics and neuropathology of frontotemporal dementia. Introduction to the special topic papers: part I. Neurocase 7:31–35. doi:10.1093/neucas/7.1.31

    Article  CAS  PubMed  Google Scholar 

  22. Hosler BA, Siddique T, Sapp PC, Sailor W, Huang MC, Hossain A, Daube JR, Nance M, Fan C, Kaplan J, Hung WY, McKenna-Yasek D, Haines JL, Pericak-Vance MA, Horvitz HR, Brown RH Jr (2000) Linkage of familial amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21–q22. JAMA 284:1664–1669. doi:10.1001/jama.284.13.1664

    Article  CAS  PubMed  Google Scholar 

  23. Imre S (2004) Disorders of executive consciousness. Ideggyogy Sz 57:292–300

    PubMed  Google Scholar 

  24. Ishii K, Sakamoto S, Sasaki M, Kitagaki H, Yamaji S, Hashimoto M, Imamura T, Shimomura T, Hirono N, Mori E (1998) Cerebral glucose metabolism in patients with frontotemporal dementia. J Nucl Med 39:1875–1878

    CAS  PubMed  Google Scholar 

  25. Jackson M, Lowe J (1996) The new neuropathology of degenerative frontotemporal dementias. Acta Neuropathol 91:127–134. doi:10.1007/s004010050403

    Article  CAS  PubMed  Google Scholar 

  26. Jagust WJ, Reed BR, Seab JP, Kramer JH, Budinger TF (1989) Clinical-physiologic correlates of Alzheimer’s disease and frontal lobe dementia. Am J Physiol Imaging 4:89–96

    CAS  PubMed  Google Scholar 

  27. Josephs KA, Parisi JE, Knopman DS, Boeve BF, Petersen RC, Dickson DW (2006) Clinically undetected motor neuron disease in pathologically proven frontotemporal lobar degeneration with motor neuron disease. Arch Neurol 63:506–512. doi:10.1001/archneur.63.4.506

    Article  PubMed  Google Scholar 

  28. Kertesz A, Davidson W, Fox H (1997) Frontal behavioral inventory: diagnostic criteria for frontal lobe dementia. Can J Neurol Sci 24:29–36

    CAS  PubMed  Google Scholar 

  29. Kizu O, Yamada K, Ito H, Nishimura T (2004) Posterior cingulate metabolic changes in frontotemporal lobar degeneration detected by magnetic resonance spectroscopy. Neuroradiology 46:277–281. doi:10.1007/s00234-004-1167-5

    Article  CAS  PubMed  Google Scholar 

  30. Klein J (2000) Membrane breakdown in acute and chronic neurodegeneration: focus on choline-containing phospholipids. J Neural Transm 107:1027–1063. doi:10.1007/s007020070051

    Article  CAS  PubMed  Google Scholar 

  31. Libon DJ, Massimo L, Moore P, Coslett HB, Chatterjee A, Aguirre GK, Rice A, Vesely L, Grossman M (2007) Screening for frontotemporal dementias and Alzheimer’s disease with the Philadelphia brief assessment of cognition: a preliminary analysis. Dement Geriatr Cogn Disord 24:441–447. doi:10.1159/000110577

    Article  PubMed  Google Scholar 

  32. Lomen-Hoerth C, Anderson T, Miller B (2002) The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 59:1077–1079

    Article  PubMed  Google Scholar 

  33. Lomen-Hoerth C, Murphy J, Langmore S, Kramer JH, Olney RK, Miller B (2003) Are amyotrophic lateral sclerosis patients cognitively normal? Neurology 60:1094–1097

    CAS  PubMed  Google Scholar 

  34. Lomen-Hoerth C (2004) Characterization of amyotrophic lateral sclerosis and frontotemporal dementia. Dement Geriatr Cogn Disord 17:337–341. doi:10.1159/000077167

    Article  PubMed  Google Scholar 

  35. Mann DM (1998) Dementia of frontal type and dementias with subcortical gliosis. Brain Pathol 8:325–338

    Article  CAS  PubMed  Google Scholar 

  36. McKhann GM, Albert MS, Grossman M, Miller B, Dickson D, Trojanowski JQ (2001) Work Group on Frontotemporal Dementia and Pick’s Disease. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick’s Disease. Arch Neurol 58:1803–1809. doi:10.1001/archneur.58.11.1803

    Article  CAS  PubMed  Google Scholar 

  37. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, Freedman M, Kertesz A, Robert PH, Albert M, Boone K, Miller BL, Cummings J, Benson DF (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554

    CAS  PubMed  Google Scholar 

  38. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133. doi:10.1126/science.1134108

    Article  CAS  PubMed  Google Scholar 

  39. Ogar JM, Dronkers NF, Brambati SM, Miller BL, Gorno-Tempini ML (2007) Progressive nonfluent aphasia and its characteristic motor speech deficits. Alzheimer Dis Assoc Disord 21:S23–S30

    Article  PubMed  Google Scholar 

  40. Osorio JA, Ozturk-Isik E, Xu D, Cha S, Chang S, Berger MS, Vigneron DB, Nelson SJ (2007) 3D 1H MRSI of brain tumors at 3.0 Tesla using an eight-channel phased-array head coil. J Magn Reson Imaging 26:23–30. doi:10.1002/jmri.20970

    Article  PubMed  Google Scholar 

  41. Peters F, Perani D, Herholz K, Holthoff V, Beuthien-Baumann B, Sorbi S, Pupi A, Degueldre C, Lemaire C, Collette F, Salmon E (2006) Orbitofrontal dysfunction related to both apathy and disinhibition in frontotemporal dementia. Dement Geriatr Cogn Disord 21:373–379. doi:10.1159/000091898

    Article  PubMed  Google Scholar 

  42. Petrides M, Pandya DN (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11:1011–1036. doi:10.1046/j.1460-9568.1999.00518.x

    Article  CAS  PubMed  Google Scholar 

  43. Pohl C, Block W, Träber F, Schmidt S, Pels H, Grothe C, Schild HH, Klockgether T (2001) Proton magnetic resonance spectroscopy and transcranial magnetic stimulation for the detection of upper motor neuron degeneration in ALS patients. J Neurol Sci 190:21–27. doi:10.1016/S0022-510X(01)00568-8

    Article  CAS  PubMed  Google Scholar 

  44. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679. doi:10.1002/mrm.1910300604

    Article  CAS  PubMed  Google Scholar 

  45. Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14:260–264. doi:10.1002/nbm.698

    Article  CAS  PubMed  Google Scholar 

  46. Rigotti DJ, Inglese M, Gonen O (2007) Whole-brain N-acetylaspartate as a surrogate marker of neuronal damage in diffuse neurologic disorders. Am J Neuroradiol 28:1843–1849. doi:10.3174/ajnr.A0774

    Article  CAS  PubMed  Google Scholar 

  47. Sarac H, Zagar M, Vranjes D, Henigsberg N, Bilić E, Pavlisa G (2008) Magnetic resonance imaging and magnetic resonance spectroscopy in a patient with amyotrophic lateral sclerosis and frontotemporal dementia. Coll Antropol 32(Suppl 1):205–210

    CAS  PubMed  Google Scholar 

  48. Schofield E, Kersaitis C, Shepherd CE, Kril JJ, Halliday GM (2003) Severity of gliosis in Pick’s disease and frontotemporal lobar degeneration: tau-positive glia differentiate these disorders. Brain 126:827–840. doi:10.1093/brain/awg085

    Article  PubMed  Google Scholar 

  49. Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW (1999) In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nat Neurosci 2:859–861. doi:10.1038/13154

    Article  CAS  PubMed  Google Scholar 

  50. Wang S, Poptani H, Woo JH, Desiderio LM, Elman LB, McCluskey LF, Krejza J, Melhem ER (2006) Amyotrophic lateral sclerosis: diffusion-tensor and chemical shift MR imaging at 3.0 T. Radiology 239:831–838. doi:10.1148/radiol.2393050573

    Article  PubMed  Google Scholar 

  51. Watanabe T, Shiino A, Akiguchi I (2008) Absolute quantification in proton magnetic resonance spectroscopy is superior to relative ratio to discriminate Alzheimer’s disease from Binswanger’s disease. Dement Geriatr Cogn Disord 26:89–100. doi:10.1159/000144044

    Article  PubMed  Google Scholar 

  52. Whitwell JL, Josephs KA, Rossor MN, Stevens JM, Revesz T, Holton JL, Al-Sarraj S, Godbolt AK, Fox NC, Warren JD (2005) Magnetic resonance imaging signatures of tissue pathology in frontotemporal dementia. Arch Neurol 62:1402–1408. doi:10.1001/archneur.62.9.1402

    Article  PubMed  Google Scholar 

  53. Xuan X, Ding M, Gong X (2008) Proton magnetic resonance spectroscopy detects a relative decrease of N-acetylaspartate in the hippocampus of patients with dementia with Lewy bodies. J Neuroimaging 18:137–141

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The support of MRI coordinator Alea Khan and technologists Doris Cain, Tonya Kurtz and Patricia O’ Donnell is gratefully acknowledged. This work was funded by NIH grants AG17586, NS44266 and AG15116.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Poptani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chawla, S., Wang, S., Moore, P. et al. Quantitative proton magnetic resonance spectroscopy detects abnormalities in dorsolateral prefrontal cortex and motor cortex of patients with frontotemporal lobar degeneration. J Neurol 257, 114–121 (2010). https://doi.org/10.1007/s00415-009-5283-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-009-5283-3

Keywords

Navigation