Skip to main content

Advertisement

Log in

Lessons from oligodendrocyte biology on promoting repair in multiple sclerosis

  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The failure of remyelination in multiple sclerosis (MS) contributes to inadequate recovery of neurological function after episodes of active inflammation and demyelination. It is likely that identification of novel strategies to promote remyelination will stem from a better understanding of oligodendrocyte biology. Here we illustrate this point by highlighting four areas where recent advances have important implications for remyelination strategies. First, oligodendrocyte precursor cells arise from different regions during development, and the cells from these distinct sites may have important functional differences. It is, therefore, essential to determine which oligodendrocyte population contributes to remyelination in the adult. Second, the extracellular matrix and its integrin receptors contribute to the regulation of oligodendrocyte behaviour, providing a hitherto unexplored set of drug targets. Third, the mechanisms that regulate myelin sheath formation are distinct from those that promote the earlier stages of differentiation, requiring experimental strategies that model sheath formation rather than simply examining oligodendrocyte differentiation in the absence of axons. Lastly, inflammation can promote remyelination and repair as well as damaging the CNS, and identification of the pro-myelinogenic factors in the immune response may also point to new therapies for MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnett HA, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JP (2001) TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci 4:1116-122

    Article  CAS  PubMed  Google Scholar 

  2. Arnett HA, Fancy SP, Alberta JA et al. (2004) bHLH transcription factor Olig1 is required to repair demyelinated lesions in the CNS. Science 306:2111-115

    Article  CAS  PubMed  Google Scholar 

  3. Back SA, Tuohy TM, Chen H et al. (2005) Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med 11:966-72

    CAS  PubMed  Google Scholar 

  4. Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55:458-68

    Article  PubMed  Google Scholar 

  5. Barres BA, Hart IK, Coles HS, Burne JF, Voyvodic JT, Richardson WD, Raff MC (1992) Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70:31-6

    Article  CAS  PubMed  Google Scholar 

  6. Barres BA, Jacobson MD, Schmid R, Sendtner M, Raff MC (1993) Does oligodendrocyte survival depend on axons? Curr Biol 3:489-97

    Article  CAS  PubMed  Google Scholar 

  7. Benninger Y, Colognato H, Thurnherr T et al. (2006) Beta1-integrin signaling mediates premyelinating oligodendrocyte survival but is not required for CNS myelination and remyelination. J Neurosci 26:7665-673

    Article  CAS  PubMed  Google Scholar 

  8. Burne JF, Staple JK, Raff MC (1996) Glial cells are increased proportionally in transgenic optic nerves with increased numbers of axons. J Neurosci 16:2064-073

    CAS  PubMed  Google Scholar 

  9. Butt AM, Hornby MF, Kirvell S, Berry M (1997) Platelet-derived growth factor delays oligodendrocyte differentiation and axonal myelination in vivo in the anterior medullary velum of the developing rat. J Neurosci Res 48:588-96

    Article  CAS  PubMed  Google Scholar 

  10. Buttery PC, ffrench-Constant C (1999) Laminin-2/integrin interactions enhance myelin membrane formation by oligodendrocytes. Mol Cell Neurosci 14:199-12

    Article  CAS  PubMed  Google Scholar 

  11. Cai J, Qi Y,Hu X, Tan M, Liu Z, Zhang J, Li Q, Sander M, Qiu M (2005) Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron 45:41-3

    Article  CAS  PubMed  Google Scholar 

  12. Cannella B, Hoban CJ, Gao YL et al. (1998) The neuregulin, glial growth factor 2, diminishes autoimmune demyelination and enhances remyelination in a chronic relapsing model for multiple sclerosis. Proc Natl Acad Sci USA 95:10100-0105

    Article  CAS  PubMed  Google Scholar 

  13. Chang A, Tourtellotte WW, Rudick R, Trapp BD (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 346:165-73

    Article  PubMed  Google Scholar 

  14. Chun SJ, Rasband MN, Sidman RL, Habib AA,Vartanian T (2003) Integrin-linked kinase is required for laminin-2-induced oligodendrocyte cell spreading and CNS myelination. J Cell Biol 163:397-08

    Article  CAS  PubMed  Google Scholar 

  15. Colognato H, Baron W, Avellana-Adalid V, Relvas JB, Baron-Van Evercooren A, Georges-Labouesse E, ffrench-Constant C (2002) CNS integrins switch growth factor signalling to promote target-dependent survival. Nat Cell Biol 4:833-41

    Article  CAS  PubMed  Google Scholar 

  16. Colognato H, Ramachandrappa S, Olsen IM, ffrench-Constant C (2004) Integrins direct Src family kinases to regulate distinct phases of oligodendrocyte development. J Cell Biol 167:365-75

    Article  CAS  PubMed  Google Scholar 

  17. Compston A, Coles A (2002) Multiple sclerosis. Lancet 359:1221-231

    Article  PubMed  Google Scholar 

  18. Farina L, Morandi L, Milanesi I, Ciceri E, Mora M, Moroni I, Pantaleoni C, Savoiardo M (1998) Congenital muscular dystrophy with merosin deficiency: MRI findings in five patients. Neuroradiology 40:807-11

    Article  CAS  PubMed  Google Scholar 

  19. Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120:393-99

    Article  PubMed  Google Scholar 

  20. Fernandez PA, Tang DG, Cheng L, Prochiantz A, Mudge AW, Raff MC (2000) Evidence that axon-derived neuregulin promotes oligodendrocyte survival in the developing rat optic nerve. Neuron 28:81-0

    Article  CAS  PubMed  Google Scholar 

  21. Fogarty M, Richardson WD, Kessaris N (2005) A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development 132:1951-959

    Article  CAS  PubMed  Google Scholar 

  22. Franklin RJ (2002) Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 3:705-14

    Article  CAS  PubMed  Google Scholar 

  23. Friede RL (1972) Control of myelin formation by axon caliber (with a model of the control mechanism). J Comp Neurol 144:233-52

    Article  CAS  PubMed  Google Scholar 

  24. Ji B, Li M,Wu WT et al. (2006) LINGO-1 antagonist promotes functional recovery and axonal sprouting after spinal cord injury. Mol Cell Neurosci 33:311-20

    Article  CAS  PubMed  Google Scholar 

  25. Kessaris N, Fogarty M, Iannarelli P, Grist M, Wegner M, Richardson WD (2006) Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci 9:173-79

    Article  CAS  PubMed  Google Scholar 

  26. Kim JY, Sun Q, Oglesbee M, Yoon SO (2003) The role of ErbB2 signaling in the onset of terminal differentiation of oligodendrocytes in vivo. J Neurosci 23:5561-571

    CAS  PubMed  Google Scholar 

  27. Kotter MR, Setzu A, Sim FJ, Van Rooijen N, Franklin RJ (2001) Macrophage depletion impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. Glia 35:204-12

    Article  CAS  PubMed  Google Scholar 

  28. Lee KK, de Repentigny Y, Saulnier R, Rippstein P, Macklin WB, Kothary R (2006) Dominant-negative beta1 integrin mice have region-specific myelin defects accompanied by alterations in MAPK activity. Glia 53:836-44

    Article  PubMed  Google Scholar 

  29. Ligon KL, Fancy SP, Franklin RJ, Rowitch DH (2006) Olig gene function in CNS development and disease. Glia 54:1-0

    Article  PubMed  Google Scholar 

  30. Linington C, Engelhardt B, Kapocs G, Lassman H (1992) Induction of persistently demyelinated lesions in the rat following the repeated adoptive transfer of encephalitogenic T cells and demyelinating antibody. J Neuroimmunol 40:219-24

    Article  CAS  PubMed  Google Scholar 

  31. Lu QR, Sun T, Zhu Z, Ma N, Garcia M, Stiles CD, Rowitch DH (2002) Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109:75-6

    Article  CAS  PubMed  Google Scholar 

  32. Lu QR, Yuk D, Alberta JA, Zhu Z, Pawlitzky I, Chan J, McMahon AP, Stiles CD, Rowitch DH (2000) Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25:317-29

    Article  CAS  PubMed  Google Scholar 

  33. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (1999) A quantitative analysis of oligodendrocytes in multiple sclerosis lesions. A study of 113 cases. Brain 122:2279-295

    Article  PubMed  Google Scholar 

  34. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707-17

    Article  CAS  PubMed  Google Scholar 

  35. Ludwin SK (1980) Chronic demyelination inhibits remyelination in the central nervous system.An analysis of contributing factors. Lab Invest 43:382-87

    CAS  PubMed  Google Scholar 

  36. Marchionni MA, Cannella B,Hoban C et al. (1999) Neuregulin in neuron/glial interactions in the central nervous system. GGF2 diminishes autoimmune demyelination, promotes oligodendrocyte progenitor expansion, and enhances remyelination. Adv Exp Med Biol 468:283-95

    CAS  PubMed  Google Scholar 

  37. Mason JL, Suzuki K, Chaplin DD, Matsushima GK (2001) Interleukin-1beta promotes repair of the CNS. J Neurosci 21:7046-052

    CAS  PubMed  Google Scholar 

  38. Matute C, Perez-Cerda F (2005) Multiple sclerosis: novel perspectives on newly forming lesions. Trends Neurosci 28:173-75

    Article  CAS  PubMed  Google Scholar 

  39. Mi S, Miller RH, Lee X et al. (2005) LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 8:745-51

    Article  CAS  PubMed  Google Scholar 

  40. Michailov GV, Sereda MW, Brinkmann BG et al. (2004) Axonal neuregulin-1 regulates myelin sheath thickness. Science 304:700-03

    Article  CAS  PubMed  Google Scholar 

  41. Milner R (1997) Understanding the molecular basis of cell migration; implications for clinical therapy in multiple sclerosis. Clin Sci (Lond) 92:113-22

    CAS  Google Scholar 

  42. Penderis J, Shields SA, Franklin RJ (2003) Impaired remyelination and depletion of oligodendrocyte progenitors does not occur following repeated episodes of focal demyelination in the rat central nervous system. Brain 126:1382-391

    Article  PubMed  Google Scholar 

  43. Penderis J, Woodruff RH, Lakatos A, Li WW, Dunning MD, Zhao C, Marchionni M, Franklin RJ (2003) Increasing local levels of neuregulin (glial growth factor-2) by direct infusion into areas of demyelination does not alter remyelination in the rat CNS. Eur J Neurosci 18:2253-264

    Article  PubMed  Google Scholar 

  44. Powell SK, Williams CC, Nomizu M, Yamada Y, Kleinman HK (1998) Laminin-like proteins are differentially regulated during cerebellar development and stimulate granule cell neurite outgrowth in vitro. J Neurosci Res 54:233-47

    Article  CAS  PubMed  Google Scholar 

  45. Prineas JW, Barnard RO, Kwon EE, Sharer LR, Cho ES (1993) Multiple sclerosis: remyelination of nascent lesions. Ann Neurol 33:137-51

    Article  CAS  PubMed  Google Scholar 

  46. Prineas JW, Barnard RO, Revesz T, Kwon EE, Sharer L, Cho ES (1993) Multiple sclerosis. Pathology of recurrent lesions. Brain 116:681-93

    Article  PubMed  Google Scholar 

  47. Raine CS, Wu E (1993) Multiple sclerosis: remyelination in acute lesions. J Neuropathol Exp Neurol 52:199-04

    Article  CAS  PubMed  Google Scholar 

  48. Relvas JB, Setzu A, Baron W, Buttery PC, LaFlamme SE, Franklin RJ, ffrench-Constant C (2001) Expression of dominant-negative and chimeric subunits reveals an essential role for beta1 integrin during myelination. Curr Biol 11:1039-043

    Article  CAS  PubMed  Google Scholar 

  49. Richardson WD, Kessaris N, Pringle N (2006) Oligodendrocyte wars. Nat Rev Neurosci 7:11-8

    Article  CAS  PubMed  Google Scholar 

  50. Rowitch DH (2004) Glial specification in the vertebrate neural tube. Nat Rev Neurosci 5:409-19

    Article  CAS  PubMed  Google Scholar 

  51. Scolding N, Franklin R, Stevens S, Heldin CH, Compston A, Newcombe J (1998) Oligodendrocyte progenitors are present in the normal adult human CNS and in the lesions of multiple sclerosis. Brain 121:2221-228

    Article  PubMed  Google Scholar 

  52. Setzu A, Ffrench-Constant C, Franklin RJ (2004) CNS axons retain their competence for myelination throughout life. Glia 45:307-11

    Article  PubMed  Google Scholar 

  53. Setzu A, Lathia JD, Zhao C,Wells K, Rao MS, Ffrench-Constant C, Franklin RJ (2006) Inflammation stimulates myelination by transplanted oligodendrocyte precursor cells. Glia 54:297-03

    Article  PubMed  Google Scholar 

  54. Sobel RA, Chen M, Maeda A, Hinojoza JR (1995) Vitronectin and integrin vitronectin receptor localization in multiple sclerosis lesions. J Neuropathol Exp Neurol 54:202-13

    Article  CAS  PubMed  Google Scholar 

  55. Sperber BR, Boyle-Walsh EA, Engleka MJ et al (2001) A unique role for Fyn in CNS myelination. J Neurosci 21:2039-047

    CAS  PubMed  Google Scholar 

  56. Trapp BD, Nishiyama A, Cheng D, Macklin W (1997) Differentiation and death of premyelinating oligodendrocytes in developing rodent brain. J Cell Biol 137:459-68

    Article  CAS  PubMed  Google Scholar 

  57. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278-85

    Article  CAS  PubMed  Google Scholar 

  58. Vallstedt A, Klos JM, Ericson J (2005) Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron 45:55-7

    Article  CAS  PubMed  Google Scholar 

  59. Vartanian T, Fischbach G, Miller R (1999) Failure of spinal cord oligodendrocyte development in mice lacking neuregulin. Proc Natl Acad Sci USA 96:731-35

    Article  CAS  PubMed  Google Scholar 

  60. Viehover A, Miller RH, Park SK, Fischbach G, Vartanian T (2001) Neuregulin: an oligodendrocyte growth factor absent in active multiple sclerosis lesions. Dev Neurosci 23:377-86

    Article  CAS  PubMed  Google Scholar 

  61. Wang AG, Yen MY, Hsu WM, Fann MJ (2006) Induction of vitronectin and integrin alphav in the retina after optic nerve injury. Mol Vis 12:76-4

    PubMed  Google Scholar 

  62. Waxman SG (1998) Demyelinating diseases–new pathological insights, new therapeutic targets. N Engl J Med 338:323-25

    Article  CAS  PubMed  Google Scholar 

  63. Xin M, Yue T, Ma Z, Wu FF, Gow A, Lu QR (2005) Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice. J Neurosci 25:1354-365

    Article  CAS  PubMed  Google Scholar 

  64. Yin Y, Cui Q, Li Y, Irwin N, Fischer D, Harvey AR, Benowitz LI (2003) Macrophage-derived factors stimulate optic nerve regeneration. J Neurosci 23:2284-293

    CAS  PubMed  Google Scholar 

  65. Yin Y, Henzl MT, Lorber B, Nakazawa T, Thomas TT, Jiang F, Langer R, Benowitz LI (2006) Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat Neurosci 9:843-52

    Article  CAS  PubMed  Google Scholar 

  66. Zhou Q, Anderson DJ (2002) The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109:61-3

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Câmara, J., ffrench-Constant, C. Lessons from oligodendrocyte biology on promoting repair in multiple sclerosis. J Neurol 254 (Suppl 1), I15–I22 (2007). https://doi.org/10.1007/s00415-007-1004-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-007-1004-y

Key words

Navigation