Skip to main content

Advertisement

Log in

Regulatory mechanisms of the immune system in multiple sclerosis. T regulatory cells: turned on to turn off

  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The immune system is homeostatically regulated to maintain a balance between triggering of inflammatory responses and protecting against self-directed autoimmunity. In autoimmune diseases, such as multiple sclerosis, this balance is disrupted. T regulatory cells, characterised by the expression of the cell surface marker CD25 and the transcription factor FoxP3, play a key role in maintaining this balance by suppression of the activity of effector T cells principally through cell-cell contact. These inhibitory effects of Treg cells appear to be impaired in multiple sclerosis. Facilitating the activity of Treg cells may thus be a promising therapeutic strategy for treatment of multiple sclerosis. Glatiramer acetate stimulates proliferation of CD4+CD25+ FoxP3+ Treg cells and their transmigration across the blood brain barrier in in vitro models. These Treg cells may cross-react with myelin within the nervous system to turn off encephalitogenic effector T cells. In multiple sclerosis, glatiramer acetate can induce a phenotypic shift in T cell populations towards CD4+CD25+ Treg cells in vitro, whereas it has been demonstrated in vivo that glatiramer acetate exposure induces a population of CD8+ suppressor T cells that regulate CD4+ T cell proliferation. In addition, glatiramer acetate down-regulates the expression of the Toll-like receptor TLR9, which may be involved in an innate immunity component of autoimmune disease, in a mouse EAE model. Upstream promotion of Treg cell differentiation by blockade of the co-stimulatory molecule CD154 may also be of benefit in preventing autoimmune disease, as illustrated by a promising exploratory Phase I study in multiple sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnon R, Sela M (2003) Immunomodulation by the copolymer glatiramer acetate. J Mol Recognit 16:412-21

    Article  CAS  PubMed  Google Scholar 

  2. Banerjee DK, Dhodapkar MV, Matayeva E, Steinman RM, Dhodapkar KM (2006) Expansion of FOXP3high regulatory T cells by human dendritic cells (DCs) in vitro and after injection of cytokine-matured DCs in myeloma patients. Blood 108:2655-661

    Article  CAS  PubMed  Google Scholar 

  3. Blackman MA, Gerhard-Burgert H, Woodland DL, Palmer E, Kappler JW, Marrack P (1990) A role for clonal inactivation in T cell tolerance to Mls-1a. Nature 345:540-42

    Article  CAS  PubMed  Google Scholar 

  4. Chang X, Gao JX, Jiang Q,Wen J, Seifers N, Su L, Godfrey VL, Zuo T, Zheng P, Liu Y (2005) The Scurfy mutation of FoxP3 in the thymus stroma leads to defective thymopoiesis. J Exp Med 202:1141-151

    Article  CAS  PubMed  Google Scholar 

  5. Chang X, Zheng P, Liu Y (2006) FoxP3: A genetic link between immunodeficiency and autoimmune diseases. Autoimmun Rev 5:399-02

    Article  CAS  PubMed  Google Scholar 

  6. Haas J, Hug A, Viehover A et al. (2005) Reduced suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur J Immunol 35:3343-352

    Article  CAS  PubMed  Google Scholar 

  7. Hong J, Li N, Zhang X, Zheng B, Zhang JZ (2005) Induction of CD4+CD25+ regulatory T cells by copolymer-I through activation of transcription factor FoxP3. Proc Natl Acad Sci USA 102:6449-454

    Article  CAS  PubMed  Google Scholar 

  8. Jones LA, Chin LT, Longo DL, Kruisbeek AM (1990) Peripheral clonal elimination of functional T cells. Science 250:1726-729

    Article  CAS  PubMed  Google Scholar 

  9. Jones LA, Chin LT, Merriam GR, Nelson LM, Kruisbeck AM (1990) Failure of clonal deletion in neonatally thymectomized mice: tolerance is preserved through clonal anergy. J Exp Med 172:1277-285

    Article  CAS  PubMed  Google Scholar 

  10. Karandikar NJ, Crawford MP et al. (2002) Glatiramer acetate (Copaxone) therapy induces CD8(+) T cell responses in patients with multiple sclerosis. J Clin Invest 109:641-49

    CAS  PubMed  Google Scholar 

  11. Kasper LH, Channon-Smith J, Ryan KA, Fadul C, Kasper IR, Noelle RJ. Induction of a CD4+CD25+ T cell subset following blockade of CD154 in a Phase I clinical trial in RRMS. (presented at AAN, 2006)

  12. Krieg AM (2006) Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov 5:471-84

    Article  CAS  PubMed  Google Scholar 

  13. Liu Y, Teige I, Birnir B, Issazadeh-Navikas S (2006) Neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE. Nat Med 12:518-25

    Article  CAS  PubMed  Google Scholar 

  14. Lu LF, Lind EF, Gondek DC et al. (2006) Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442:997-002

    Article  CAS  PubMed  Google Scholar 

  15. Mackey MF, Barth RJ Jr, Noelle RJ (1998) The role of CD40/CD154 interactions in the priming, differentiation, and effector function of helper and cytotoxic T cells. J Leukoc Biol 63:418-28

    CAS  PubMed  Google Scholar 

  16. Norman MU, Hickey MJ (2005) Mechanisms of lymphocyte migration in autoimmune disease. Tissue Antigens 66:163-72

    Article  CAS  PubMed  Google Scholar 

  17. Prinz M, Garbe F, Schmidt H et al. (2006) Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. J Clin Invest 116:456-64

    Article  CAS  PubMed  Google Scholar 

  18. Rocken M, Shevach EM (1996) Immune deviation—the third dimension of nondeletional T cell tolerance. Immunol Rev 149:175-94

    Article  CAS  PubMed  Google Scholar 

  19. Sakaguchi S, Ono M, Setoguchi R et al. (2006) FoxP3+ CD25+ CD4+ natural regulatory T cells in dominant selftolerance and autoimmune disease. Immunol Rev 212:8-7

    Article  CAS  PubMed  Google Scholar 

  20. Sakaguchi S, Sakaguchi N, Shimizu J et al. (2001) Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 182:18-2

    Article  CAS  PubMed  Google Scholar 

  21. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alphachains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151-164

    CAS  PubMed  Google Scholar 

  22. Stephens LA, Gray D, Anderton SM (2005) CD4+CD25+ regulatory T cells limit the risk of autoimmune disease arising from T cell receptor crossreactivity. Proc Natl Acad Sci USA 102:17418-7423

    Article  CAS  PubMed  Google Scholar 

  23. Tennakoon DK, Mehta RS, Ortega SB, Bhoj V, Racke MK, Karandikar NJ (2006) Therapeutic induction of regulatory, cytotoxic CD8+ T cells in multiple sclerosis. J Immunol 176:7119-129

    CAS  PubMed  Google Scholar 

  24. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA (2004) Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199:971-79

    Article  CAS  PubMed  Google Scholar 

  25. Walker MR, Kasprowicz DJ, Gersuk VH, Benard A, Van Landeghen M, Buckner JH, Ziegler SF (2003) Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells. J Clin Invest 112:1437-443

    CAS  PubMed  Google Scholar 

  26. Webb S, Morris C, Sprent J (1990) Extrathymic tolerance of mature T cells: clonal elimination as a consequence of immunity. Cell 63:1249-256

    Article  CAS  PubMed  Google Scholar 

  27. Weiner HL (1997) Oral tolerance for the treatment of autoimmune diseases. Annu Rev Med 48:341-51

    Article  CAS  PubMed  Google Scholar 

  28. Yu P, Gregg RK, Bell JJ et al. (2005) Specific T regulatory cells display broad suppressive functions against experimental allergic encephalomyelitis upon activation with cognate antigen. J Immunol 174:6772-6780

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd H. Kasper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasper, L.H., Haque, A. & Haque, S. Regulatory mechanisms of the immune system in multiple sclerosis. T regulatory cells: turned on to turn off. J Neurol 254 (Suppl 1), I10–I14 (2007). https://doi.org/10.1007/s00415-007-1003-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-007-1003-z

Key words

Navigation