Skip to main content

Advertisement

Log in

Topographic correspondence between white matter hyperintensities and brain atrophy

  • ORIGINAL COMMUNICATION
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

White matter hyperintensities (WMHs) are a common finding in normal elderly persons. We studied the biological damage associated with WMHs by assessing the correspondence between WMH location and regional gray matter loss.Voxel–based morphometry of the gray matter was carried out with statistical parametric mapping on high resolution MR images.Neurologically intact persons with mainly anterior (frontal>parieto–occipital; N = 39) and mainly posterior WMHs (parieto– occipital>frontal; N = 14) were compared with a group devoid of WMHs (N = 80). Subjects with mainly frontal WMHs had bilateral frontal (medial, superior, and inferior gyri) atrophy in gray matter, while subjects with mainly posterior WMHs had more diffuse atrophy, involving mainly the frontal but also the right insular region. Our findings suggest that frontal WMHs are associated with frontal gray matter damage while parietooccipital WMHs seem to have a weaker and more diffuse impact on gray matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amodio P,Wenin H, Del Piccolo F, Mapelli D,Montagnese S, Pellegrini A, Musto C, Gatta A,Umilta C (2002) Variability of trail making test, symbol digit test and line trait test in normal people. A normative study taking into account age–dependent decline and sociobiological variables. Aging Clin Exp Res 14:117–131

    PubMed  Google Scholar 

  2. Ashburner J, Friston KJ (2001) Why voxel–based morphometry should be used. NeuroImage 14:1238–1243

    Article  PubMed  CAS  Google Scholar 

  3. Augustine JR (1996) Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev 22:229–244

    Article  PubMed  CAS  Google Scholar 

  4. Augustine JR (1985) The insular lobe in primates including humans. Neurol Res 7:2–10

    PubMed  CAS  Google Scholar 

  5. Boone KB,Miller BL, Lesser IM, Mehringer CM,Hill–Gutierrez E, Goldberg MA, Berman NG (1992) Neuropsychological correlates of white–matter lesions in healthy elderly subjects. A threshold effect. Arch Neurol 49:549–554

    PubMed  CAS  Google Scholar 

  6. Caffarra P,Vezzadini G,Dieci F, Zonato F, Venneri A (2002) Rey–Osterrieth complex figure: normative values in an Italian population sample. Neurol Sci 22:443–437

    Article  PubMed  CAS  Google Scholar 

  7. Capizzano AA,Acion L, Bekinschtein T, Furman M,Gomila H,Martinez A, Mizrahi R, Starkstein SE (2004) White matter hyperintensities are significantly associated with cortical atrophy in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 75:822–827

    Article  PubMed  CAS  Google Scholar 

  8. Carlesimo GA, Caltagirone C, Gainotti G (1996) The Mental Deterioration Battery: normative data, diagnostic reliability and qualitative analyses of cognitive impairment. The Group for the Standardization of the Mental Deterioration Battery. Eur Neurol 36:378–384

    PubMed  CAS  Google Scholar 

  9. Coffey CE,Wilkinson WE, Parashos IA, Soady SA, Sullivan RJ, Patterson LJ, Figiel GS,Webb MC, Spritzer CE, Djang WT (1992) Quantitative cerebral anatomy of the aging human brain: a cross–sectional study using magnetic resonance imaging. Neurology 42:527–536

    PubMed  CAS  Google Scholar 

  10. De Leeuw F, De Groot J, Breteler M White matter changes. Frequency and risk factors. In: Pantoni L (ed) The matter of white matter.Academic Pharmaceutical Production,Utrecht, p 19

  11. DeCarli C,Murphy DG, Tranh M, Grady CL,Haxby JV,Gillette JA, Salerno JA,Gonzales–Aviles A,Horwitz B, Rapoport SI, et al. (1995) The effect of white matter hyperintensity volume on brain structure, cognitive performance, and cerebral metabolism of glucose in 51 healthy adults. Neurology 45:2077–2084

    PubMed  CAS  Google Scholar 

  12. De Renzi E,Vignolo LA (1962) The token test: a sensitive test to detect receptive disturbances in aphasia. Brain 85:665–678

    PubMed  CAS  Google Scholar 

  13. Evans AC,Kamber M, Collins DL, Macdonald D (1994) An MRI–based probabilistic atlas of neuroanatomy. In: Shorvon S, Fish D, Andermann F, et al. (eds) Magnetic resonance scanning and epilepsy.New York: Plenum Press, pp 263–274

    Google Scholar 

  14. Fazekas F, Schmidt R,Kleinert R, Kapeller P, Roob G, Flooh E (1998) The spectrum of age–associated brain abnormalities: their measurement and histopathological correlates. J Neural Transm Suppl 53:31–39

    PubMed  CAS  Google Scholar 

  15. Folstein MF, Folstein SE,McHugh PR (1975) “Mini–mental State”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  PubMed  CAS  Google Scholar 

  16. Good CD, Johnsrude IS,Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel–based morphometric study of ageing in 465 normal adult human brains. NeuroImage 14:21–36

    Article  PubMed  CAS  Google Scholar 

  17. Gootjes L, Teipel SJ, Zebuhr Y, Schwarz R, Leinsinger G, Scheltens P,Moller HJ, Hampel H (2004) Regional Distribution ofWhite Matter Hyperintensities in Vascular Dementia, Alzheimer’s Disease and Healthy Aging. Dement Geriatr Cogn Disord 18:180–188

    Article  PubMed  CAS  Google Scholar 

  18. Gunning–Dixon FM, Raz N (2000) The cognitive correlates of white matter abnormalities in normal aging: a quantitative review. Neuropsychology 14:224–232

    Article  PubMed  CAS  Google Scholar 

  19. Hunt AL, Orrison WW,Yeo RA, Haaland KY, Rhyne RL, Garry PJ, Rosenberg GA (1989) Clinical significance of MRI white matter lesions in the elderly. Neurology 39:1470–1474

    PubMed  CAS  Google Scholar 

  20. Jernigan TL, Archibald SL, Fennema– Notestine C, Gamst AC, Stout JC, Bonner J,Hesselink JR (2001) Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging 22:581–594

    Article  PubMed  CAS  Google Scholar 

  21. Matsubayashi K, Shimada K, Kawamoto A, Ozawa T (1992) Incidental brain lesions on magnetic resonance imaging and neurobehavioral functions in the apparently healthy elderly. Stroke 23:175–180

    CAS  Google Scholar 

  22. Metitieri T, Geroldi C, Pezzini A, Frisoni GB, Bianchetti A, Trabucchi M (2001) The Itel–MMSE: an Italian telephone version of the Mini–Mental State Examination. Int J Geriatr Psychiatry 16:166–167

    Article  PubMed  CAS  Google Scholar 

  23. Mirsen TR, Lee DH,Wong CJ,Diaz JF, Fox AJ,Hachinski VC,Merskey H (1991) Clinical correlates of whitematter changes on magnetic resonance imaging scans of the brain. Arch Neurol 48:1015–1021

    PubMed  CAS  Google Scholar 

  24. Roman GC (1987) Senile dementia of the Binswanger type. A vascular form of dementia in the elderly. JAMA 258:1782–1788

    Article  PubMed  CAS  Google Scholar 

  25. Schmidt R, Fazekas F, Offenbacher H, Dusek T, Zach E, Reinhart B,Grieshofer P, Freidl W, Eber B, Schumacher M, et al. (1993) Neuropsychologic correlates of MRI white matter hyperintensities: a study of 150 normal volunteers. Neurology 43:2490–2494

    PubMed  CAS  Google Scholar 

  26. Spinnler H, Tognoni G (1987). Standardizzazione e taratura italiana di test neuropsicologici. Ital J Neurol Sci 6(Suppl 8):1–120

    Google Scholar 

  27. Sultzer DL,Mahler ME, Cummings JL, Van Gorp WG,Hinkin CH, Brown C (1995) Cortical abnormalities associated with subcortical lesions in vascular dementia. Clinical and position emission tomographic findings. Arch Neurol 52:773–780

    PubMed  CAS  Google Scholar 

  28. Takahashi W, Takagi S, Ide M, Shohtsu A, Shinohara Y (2000) Reduced cerebral glucose metabolism in subjects with incidental hyperintensities on magnetic resonance imaging. J Neurol Sci 176:21–27

    Article  PubMed  CAS  Google Scholar 

  29. Tullberg M, Fletcher E, DeCarli C, Mungas D, Reed BR,Harvey DJ,Weiner MW, Chui HC, Jagust WJ (2004) White matter lesions impair frontal lobe function regardless of their location. Neurology 63:246–253

    PubMed  CAS  Google Scholar 

  30. Tupler LA, Coffey CE, Logue PE, Djang WT, Fagan SM (1922) Neuropsychological importance of subcortical white matter hyperintensity. Arch Neurol 49:1248–1252

    Google Scholar 

  31. Victor M, Ropper AH (eds) (2002) Adams and Victor’s Principles Of Neurology, 7th edition.New York:McGraw– Hill

    Google Scholar 

  32. Wahlund LO, Barkhof F, Fazekas F, Bronge L,Augustin M, Sjogren M, Wallin A,Ader H, Leys D, Pantoni L, Pasquier F, Erkinjuntti T, Scheltens P; European Task Force on Age–Related White Matter Changes (2001) European Task Force on Age–Related White Matter Changes. A new rating scale for age–related white matter changes applicable to MRI and CT. Stroke 32:1318–1322

    PubMed  CAS  Google Scholar 

  33. Wen W, Sachdev P, Shnier R, Brodaty H (2004) Effect of white matter hyperintensities on cortical cerebral blood volume using perfusion MRI. Neuroimage 21:1350–1356

    Article  PubMed  Google Scholar 

  34. Ylikoski A, Erkinjuntti T, Raininko R, Sarna S, Sulkava R, Tilvis R (1995) White matter hyperintensities on MRI in the neurologically nondiseased elderly. Analysis of cohorts of consecutive subjects aged 55 to 85 years living at home. Stroke 26:1171–1177

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rossi MS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossi, R., Boccardi, M., Sabattoli, F. et al. Topographic correspondence between white matter hyperintensities and brain atrophy. J Neurol 253, 919–927 (2006). https://doi.org/10.1007/s00415-006-0133-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-006-0133-z

Key words

Navigation