Skip to main content

Advertisement

Log in

Changes observed in multiple sclerosis using magnetic resonance imaging reflect a focal pathology distributed along axonal pathways

  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Multiple sclerosis has long been recognized as a multifocal inflammatory demyelinating disease of the central nervous system. The fact that patients with multiple sclerosis can develop a secondary progressive phase of their disease which is resistant to anti-inflammatory therapies, together with the fact that brain atrophy can develop in patients with a relatively low volume of white matter lesions, has led to suggestions that multiple sclerosis may be a degenerative disease. However, primary degenerative disorders are not usually associated with recurrent episodes of inflammatory demyelination. Support for neurodegeneration in MS being associated with focal lesions comes from topographical mapping of the spatial relationship of axonal injury and tissue loss to lesions using advanced image analysis methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold DL, Matthews PM, Francis G, Antel J (1990) Proton magnetic resonance spectroscopy of human brain in vivo in the evaluation of multiple sclerosis: assessment of the load of disease. Magn Reson Med 14:154–159

    PubMed  Google Scholar 

  2. Arnold DL, Matthews PM, Francis GS, O’Connor J, Antel JP (1992) Proton magnetic resonance spectroscopic imaging for metabolic characterization of demyelinating plaques. Ann Neurol 31:235–241

    Article  PubMed  Google Scholar 

  3. Chard DT, Griffin CM, Parker GJ, Kapoor R, Thompson AJ, Miller DH (2002) Brain atrophy in clinically early relapsing-remitting multiple sclerosis. Brain 125:327–337

    Article  PubMed  Google Scholar 

  4. Chen JT, Matthews PM, Arnold DL, Zhang Y, Smith SM (2001) Regional brain atrophy in multiple sclerosis: increasing sensitivity to differences in relapsing-remitting and secondary-progressive disease [abstract]. Proc Int Soc Magn Res Med 9:265

    Google Scholar 

  5. De Stefano N, Narayanan S, Matthews PM, Francis GS, Antel JP, Arnold DL (1999) In vivo evidence for axonal dysfunction remote from focal cerebral demyelination of the type seen in multiple sclerosis. Brain 122:1933–1939

    Article  PubMed  Google Scholar 

  6. Evangelou N, Konz D, Esiri MM, Smith S, Palace J, Matthews PM (2000) Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis. Brain 123:1845–1849

    Article  PubMed  Google Scholar 

  7. Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120:393–399

    Article  PubMed  Google Scholar 

  8. Fu L, Matthews PM, De Stefano N, et al. (1998) Imaging axonal damage of normal-appearing white matter in multiple sclerosis. Brain 121:103–113

    Article  PubMed  Google Scholar 

  9. Ganter P, Prince C, Esiri MM (1999) Spinal cord axonal loss in multiple sclerosis: a post-mortem study. Neuropathol Appl Neurobiol 25:459–467

    Article  PubMed  Google Scholar 

  10. Hickman SJ, Brex PA, Brierley CM, Silver NC, Barker GJ, Scolding NJ, Compston DA, Moseley IF, Plant GT, Miller DH (2001) Detection of optic nerve atrophy following a single episode of unilateral optic neuritis by MRI using a fat-saturated short-echo fast FLAIR sequence. Neuroradiology 43:123–128

    Article  PubMed  Google Scholar 

  11. Hickman SJ, Toosy AT, Jones SJ, Altmann DR, Miszkiel KA, MacManus DG, Barker GJ, Plant GT, Thompson AJ, Miller DH (2004) A serial MRI study following optic nerve mean area in acute optic neuritis. Brain 127:2498–2505

    Article  PubMed  Google Scholar 

  12. Kapoor R, Davies M, Blaker PA, Hall SM, Smith KJ (2003) Blockers of sodium and calcium entry protect axons from nitric oxide-mediated degeneration. Ann Neurol 53:174–180

    Article  PubMed  Google Scholar 

  13. Losseff NA, Wang L, Lai HM, Yoo DS, Gawne-Cain ML, McDonald WI, Miller DH, Thompson AJ (1996) Progressive cerebral atrophy in multiple sclerosis. A serial MRI study. Brain 119:2009–2019

    PubMed  Google Scholar 

  14. Lovas G, Szilagyi N, Majtenyi K, Palkovits M, Komoly S (2000) Axonal changes in chronic demyelinated cervical spinal cord plaques. Brain 123:308–317

    Article  PubMed  Google Scholar 

  15. Matthews PM, Francis G, Antel J, Arnold DL (1991) Proton magnetic resonance spectroscopy for metabolic characterization of plaques in multiple sclerosis. Neurology 41:1251–1256

    PubMed  Google Scholar 

  16. Medana I, Martinic MA, Wekerle H, et al. (2001) Transection of major histocompatibility complex class I-induced neuritis by cytotoxic T lymphocytes. Am J Pathol 159:809–815

    PubMed  Google Scholar 

  17. Miller DH, Barkhof F, Frank JA, Parker GJ, Thompson AJ (2002) Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain 125:1676–1695

    Article  PubMed  Google Scholar 

  18. Morgen K, Crawford AL, Stone RD, Martin R, Richert ND, Frank JA, Mc-Farland HF (2005) Contrast-enhanced MRI lesions during treatment with interferonbeta-1b predict increase in T1 black hole volume in patients with relapsing-remitting multiple sclerosis. Mult Scler 11:146–148

    Article  PubMed  Google Scholar 

  19. Paolillo A, Piattella MC, Pantano P, Di Legge S, Caramia F, Russo P, Lenzi GL, Pozzilli C (2004) The relationship between inflammation and atrophy in clinically isolated syndromes suggestive of multiple sclerosis. A monthly MRI study after triple-dose gadolinium-DTPAJ Neurol 251:432–439

    Article  Google Scholar 

  20. Richert N, Howard T, Frank JA, Stone RD, Ostuni J, Bash CN, Ohayon J, Mc-Farland HF (2005) Synchronous patterns of cerebral atrophy and inflammatory lesions in multiple sclerosis: evidence from a 3-year longitudinal study. Neurology 65(Suppl 1):A259

    Google Scholar 

  21. Rudick RA, Fisher E, Lee J-C, Simon J (2005) Significance of T2 Lesions in Relapsing Remitting MS: A 13-Year Longitudinal Study. Neurology 65(Suppl 1):A128

    Google Scholar 

  22. Rudick RA, Fisher E, Lee JC, Simon J, Jacobs L (1999) Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS.Multiple Sclerosis Collaborative Research Group. Neurology 53:1698–1704

    PubMed  Google Scholar 

  23. Sailer M, Fischl B, Salat D, Tempelmann C, Schonfeld MA, Busa E, Bodammer N, Heinze HJ, Dale A (2003) Focal thinning of the cerebral cortex in multiple sclerosis. Brain 126:1734–1744

    Article  PubMed  Google Scholar 

  24. Saindane AM, Ge Y, Udupa JK, Babb JS, Mannon LJ, Grossman RI (2000) The effect of gadolinium-enhancing lesions on whole brain atrophy in relapsing-remitting MS. Neurology 55:61–65

    PubMed  Google Scholar 

  25. Simon JH, Jacobs L, Kinkel RP (2001) Transcallosal bands: a sign of neuronal tract degeneration in early MS? Neurology 57:1888–1890

    PubMed  Google Scholar 

  26. Simon JH, Kinkel RP, Jacobs L, Bub L, Simonian N (2000) A Wallerian degeneration pattern in patients at risk for MS. Neurology 54:1155–1160

    PubMed  Google Scholar 

  27. Simon JH, McDonald WI (2000) Assessment of optic nerve damage in multiple sclerosis using magnetic resonance imaging. J Neurol Sci 172(Suppl 1):S23–S26

    Article  PubMed  Google Scholar 

  28. Simon JH, Miller DH, Zhang S, Brown M, Corboy JR, Bennett JL, Laidlaw DH (2005) Visualization of fibers at risk for neuronal tract injury in early MS by streamtube diffusion tractography at 3 Tesla. Neurology 65(Suppl 1):A259

    Google Scholar 

  29. Smith SM, De Stefano N, Jenkinson M, Matthews PM (2001) Normalized accurate measurement of longitudinal brain change. J Comput Assist Tomogr 25:466–475

    Article  PubMed  Google Scholar 

  30. Sormani MP, Rovaris M, Valsasina P, Wolinsky JS, Comi G, Filippi M (2004) Measurement error of two different techniques for brain atrophy assessment in multiple sclerosis. Neurology 62:1432–1434

    PubMed  Google Scholar 

  31. Stys PK (2005) General mechanisms of axonal damage and its prevention. J Neurol Sci 233:3–13

    Article  PubMed  Google Scholar 

  32. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285

    Article  PubMed  Google Scholar 

  33. Waxman SG, Craner MJ, Black JA (2004) Na + channel expression along axons in multiple sclerosis and its models. Trends Pharmacol Sci 25:584–591

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas L. Arnold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, D.L. Changes observed in multiple sclerosis using magnetic resonance imaging reflect a focal pathology distributed along axonal pathways. J Neurol 252 (Suppl 5), v25–v29 (2005). https://doi.org/10.1007/s00415-005-5005-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-005-5005-4

Key words

Navigation