Skip to main content

Advertisement

Log in

Development of a novel forensic age estimation strategy for aged blood samples by combining piRNA and miRNA markers

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

In forensic investigations, age estimation is vital for determining whether a suspect is under or over the legally defined adult age. With breakthroughs in RNA sequencing technology, small noncoding RNAs have provided new ways to solve problems related to the age estimation of trace or aged samples, owing to their small molecular weight and better stability. In our previous study, we had applied miRNAs for the age estimation of bloodstains; however, further improvement of the existing model is needed. PIWI-interacting RNAs (PiRNAs), which are 24–32 nt noncoding small RNA molecules involved in the PIWI-piRNA pathway, play an important role in the aging process. In this study, we explored the possibility of simultaneously analyzing piRNAs and miRNAs for better age estimation purpose. Through massively parallel sequencing, five age-related piRNAs were identified in blood samples that had been stored for eight years. Further real-time PCR analysis revealed that two piRNAs (piR-000753 and piR-020548) showed relatively higher efficiency in age estimation. Additionally, two age-related miRNAs (miR-324-3p and miR-330-5p) were used to build the estimation model. Among all algorithms tested, gradient boosting showed the lowest mean absolute error (MAE) and root mean square error (RMSE) values (3.171 and 4.403 years, respectively) for the validation dataset (n = 110). The errors of the model were less than 5 years and 10 years for 81.82% and 96.36% of the samples, respectively. The results suggest that the combined use of piRNA and miRNA markers may increase the accuracy of age estimation, and our new model has great potential for application in forensic casework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Deng XD, Lu T, Liu GF et al (2022) Forensic age prediction and age classification for critical age thresholds via 3.0T magnetic resonance imaging of the knee in the Chinese Han population. Int J Legal Med 136:841–852. https://doi.org/10.1007/s00414-022-02797-y

    Article  PubMed  Google Scholar 

  2. Correia Dias H, Manco L, Corte Real F, Cunha E (2021) A Blood-Bone-Tooth Model for Age Prediction in Forensic Contexts. Biology (Basel) 10:1312. https://doi.org/10.3390/biology10121312

    Article  CAS  PubMed  Google Scholar 

  3. Valsecchi A, Irurita Olivares J, Mesejo P (2019) Age estimation in forensic anthropology: methodological considerations about the validation studies of prediction models. Int J Legal Med 133:1915–1924. https://doi.org/10.1007/s00414-019-02064-7

    Article  PubMed  Google Scholar 

  4. Montesanto A, D’Aquila P, Lagani V et al (2020) A New Robust Epigenetic Model for Forensic Age Prediction. J Forensic Sci 65:1424–1431. https://doi.org/10.1111/1556-4029.14460

    Article  CAS  PubMed  Google Scholar 

  5. Correia Dias H, Cunha E, Corte Real F, Manco L (2020) Age prediction in living: Forensic epigenetic age estimation based on blood samples. Leg Med (Tokyo) 47:101763. S1344-6223(20)30097-3

  6. Goto H, Iwata H, Takeo S et al (2013) Effect of bovine age on the proliferative activity, global DNA methylation, relative telomere length and telomerase activity of granulosa cells. Zygote 21:256–264. https://doi.org/10.1017/S0967199411000499

    Article  CAS  PubMed  Google Scholar 

  7. Theves C, Keyser-Tracqui C, Crubezy E, Salles JP, Ludes B, Telmon N (2006) Detection and quantification of the age-related point mutation A189G in the human mitochondrial DNA. J Forensic Sci 51:865–73. JFO163. https://doi.org/10.1111/j.1556-4029.2006.00163.x

  8. Aliferi A, Ballard D (2022) Predicting Chronological Age from DNA Methylation Data: A Machine Learning Approach for Small Datasets and Limited Predictors. Methods Mol Biol 2432:187–200. https://doi.org/10.1007/978-1-0716-1994-0_14

    Article  PubMed  Google Scholar 

  9. Pavanello S, Campisi M, Rigotti P et al (2022) DNA Methylation - and Telomere - Based Biological Age Estimation as Markers of Biological Aging in Donors Kidneys. Front Med (Lausanne) 9:832411. https://doi.org/10.3389/fmed.2022.832411

    Article  PubMed  Google Scholar 

  10. Schwender K, Hollander O, Klopfleisch S et al (2021) Development of two age estimation models for buccal swab samples based on 3 CpG sites analyzed with pyrosequencing and minisequencing. Forensic Sci Int Genet 53:102521. S1872-4973(21)00059-4

  11. Szeto RA, Tran T, Truong J, Negraes PD, Trujillo CA (2021) RNA processing in neurological tissue: development, aging and disease. Semin Cell Dev Biol 114:57–67. S1084–9521(19)30254-X

  12. Proshkina E, Solovev I, Koval L, Moskalev A (2020) The critical impacts of small RNA biogenesis proteins on aging, longevity and age-related diseases. Ageing Res Rev 62:101087. S1568-1637(20)30222-1

  13. Song Y, Shen S, Sun Q (2022) Identification and validation of an epigenetically regulated long noncoding RNA model for breast cancer metabolism and prognosis. BMC Med Genomics 15:105. https://doi.org/10.1186/s12920-022-01256-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng Y, Saville L, Gollen B et al (2021) Increased Alu RNA processing in Alzheimer brains is linked to gene expression changes. EMBO Rep 22:e52255. https://doi.org/10.15252/embr.202052255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Neema Agrawal, P. V. N. Dasaradhi, Asif Mohmmed et al (2003) RNA Interference: Biology,Mechanism, and Applications. Microbiol Mole Biol Rev 657-685. https://doi.org/10.1128/MMBR.67.4.657-685.2003

  16. Glynn CL (2020) Potential applications of microRNA profiling to forensic investigations. RNA 26:1–9. https://doi.org/10.1261/rna.072173.119rna.072173.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang J, Wang C, Wei Y et al (2022) Circular RNA as a Potential Biomarker for Forensic Age Prediction. Front Genet 13:825443. https://doi.org/10.3389/fgene.2022.825443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fang C, Liu X, Zhao J et al (2020) Age estimation using bloodstain miRNAs based on massive parallel sequencing and machine learning: A pilot study. Forensic Sci Int Genet 47:102300. S1872-4973(20)30073-9

  19. Ameli Mojarad M, Shojaee B, Nazemalhosseini-Mojarad E (2022) piRNA: A promising biomarker in early detection of gastrointestinal cancer. Pathol Res Pract 230:153757. S0344–0338(21)00418–0

  20. Rayford KJ, Cooley A, Rumph JT et al (2021) piRNAs as Modulators of Disease Pathogenesis. Int J Mol Sci 22:2373. https://doi.org/10.3390/ijms22052373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Erwin AA, Blumenstiel JP (2019) Aging in the Drosophila ovary: contrasting changes in the expression of the piRNA machinery and mitochondria but no global release of transposable elements. BMC Genomics 20:305. https://doi.org/10.1186/s12864-019-5668-3

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lenart P, Novak J, Bienertova-Vasku J (2018) PIWI-piRNA pathway: Setting the pace of aging by reducing DNA damage. Mech Ageing Dev 173:29–38. S0047–6374(18)30018–6

  23. Wang S, Wang Z, Tao R et al (2019) Expression profile analysis of piwi-interacting RNA in forensically relevant biological fluids. Forensic Sci Int Genet 42:171–80. S1872–4973(19)30221–2

  24. Wang S, Wang Z, Tao R et al (2019) The potential use of Piwi-interacting RNA biomarkers in forensic body fluid identification: A proof-of-principle study. Forensic Sci Int Genet 39:129–35. S1872–4973(18)30415–0

  25. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. https://doi.org/10.1186/gb-2009-10-3-r25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang L, Feng Z, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138. https://doi.org/10.1093/bioinformatics/btp612

    Article  CAS  PubMed  Google Scholar 

  27. Fang C, Zhao J, Liu X et al (2019) MicroRNA profile analysis for discrimination of monozygotic twins using massively parallel sequencing and real-time PCR. Forensic Sci Int Genet 38:23–31. S1872–4973(18)30094–2

  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  29. Kuzub N, Smialkovska V, Momot V, Moseiko V, Lushchak O, Koliada A (2021) Evaluation of Epigenetic Age Based on DNA Methylation Analysis of Several CpG Sites in Ukrainian Population. Front Genet 12:772298. https://doi.org/10.3389/fgene.2021.772298

    Article  CAS  PubMed  Google Scholar 

  30. Lee JE, Lee JM, Naue J et al (2022) A collaborative exercise on DNA methylation-based age prediction and body fluid typing. Forensic Sci Int Genet 57:102656. S1872–4973(21)00191–5

  31. Zbiec-Piekarska R, Spolnicka M, Kupiec T et al (2015) Examination of DNA methylation status of the ELOVL2 marker may be useful for human age prediction in forensic science. Forensic Sci Int Genet 14:161–167. https://doi.org/10.1016/j.fsigen.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  32. Watanabe K, Akutsu T (2020) Evaluation of a co-extraction kit for mRNA, miRNA and DNA methylation-based body fluid identification. Leg Med (Tokyo) 42:101630. S1344–6223(19)30297–4

  33. Mayes C, Houston R, Seashols-Williams S, LaRue B, Hughes-Stamm S (2019) The stability and persistence of blood and semen mRNA and miRNA targets for body fluid identification in environmentally challenged and laundered samples. Leg Med (Tokyo) 38:45–50. S1344–6223(19)30035–5

  34. Rajan KS, Velmurugan G, Gopal P et al (2016) Abundant and Altered Expression of PIWI-Interacting RNAs during Cardiac Hypertrophy. Heart Lung Circ 25:1013–1020. https://doi.org/10.1016/j.hlc.2016.02.015

    Article  PubMed  Google Scholar 

  35. Liu Y, Dou M, Song X et al (2019) The emerging role of the piRNA/piwi complex in cancer. Mol Cancer 18:123. https://doi.org/10.1186/s12943-019-1052-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang L, Meng X, Pan C et al (2020) piR-31470 epigenetically suppresses the expression of glutathione S-transferase pi 1 in prostate cancer via DNA methylation. Cell Signal 67:109501. S0898–6568(19)30297–9

  37. Tan L, Mai D, Zhang B et al (2019) PIWI-interacting RNA-36712 restrains breast cancer progression and chemoresistance by interaction with SEPW1 pseudogene SEPW1P RNA. Mol Cancer 18:9. https://doi.org/10.1186/s12943-019-0940-3

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gorbunova V, Seluanov A, Mita P et al (2021) The role of retrotransposable elements in ageing and age-associated diseases. Nature 596:43–53. https://doi.org/10.1038/s41586-021-03542-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Anastasia A, David B, Matteo D et al (2018) DNA methylation-based age prediction using massively parallel sequencing data and multiple machine learning models. Forensic Sci Int Genet 37:215–226. https://doi.org/10.1016/j.fsigen.2018.09.003

    Article  CAS  Google Scholar 

  40. Glinge C, Clauss S, Boddum K et al (2017) Stability of Circulating Blood-Based MicroRNAs - Pre-Analytic Methodological Considerations. PLoS One 12:e0167969. https://doi.org/10.1371/journal.pone.0167969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 82002006 and 82030058), Organization Department of Beijing Talents Project (2018400685627G339), the Open project of Shanghai Key Laboratory of Forensic Medicine, Key lab of Forensic Science, Ministry of Justice, China (Academy of Forensic Science)(KF202206) and Qingchuang Talents Induction Program of Shandong Higher Education Institution (2022 Forensic medicine innovation team).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen Fang or Jiangwei Yan.

Ethics declarations

Ethics approval

The study was Ethics Committee of Shandong First Medical University (approval number 2022–729).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, C., Zhou, P., Li, R. et al. Development of a novel forensic age estimation strategy for aged blood samples by combining piRNA and miRNA markers. Int J Legal Med 137, 1327–1335 (2023). https://doi.org/10.1007/s00414-023-03028-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-023-03028-8

Keywords

Navigation