Skip to main content

Advertisement

Log in

Diagnostic models to predict nuclear DNA and mitochondrial DNA recovery from incinerated teeth

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Teeth are frequently used for human identification from burnt remains, as the structure of a tooth is resilient against heat exposure. The intricate composition of hydroxyapatite (HA) mineral and collagen in teeth favours DNA preservation compared to soft tissues. Regardless of the durability, the integrity of the DNA structure in teeth can still be disrupted when exposed to heat. Poor DNA quality can negatively affect the success of DNA analysis towards human identification. The process of isolating DNA from biological samples is arduous and costly. Thus, an informative pre-screening method that could aid in selecting samples that can potentially yield amplifiable DNA would be of excellent value. A multiple linear regression model to predict the DNA content in incinerated pig teeth was developed based on the colourimetry, HA crystallite size and quantified nuclear and mitochondrial DNA. The chromaticity a* was found to be a significant predictor of the regression model. This study outlines a method to predict the viability of extracting nuclear and mitochondrial DNA from pig teeth that were exposed to a wide range of temperatures (27 to 1000 °C) with high accuracy (99.5–99.7%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Klempner S et al (2016) Processing skeletal samples for forensic DNA analysis. In: Katz E, Halámek J (eds) Forensic science: a multidisciplinary approach. John Wiley & Sons, Incorporated, Berlin, Germany, pp 177–192

    Chapter  Google Scholar 

  2. Fredericks JD et al (2015) A potential new diagnostic tool to aid DNA analysis from heat compromised bone using colorimetry: a preliminary study. Sci Justice 55(2):124–130

    Article  PubMed  Google Scholar 

  3. Budowle B, Bieber FR, Eisenberg AJ (2005) Forensic aspects of mass disasters: strategic considerations for DNA-based human identification. Legal Med 7(4):230–243

    Article  CAS  PubMed  Google Scholar 

  4. Rennick SL, Fenton TW, Foran DR (2005) The effects of skeletal preparation techniques on DNA from human and non-human bone. J Forensic Sci 50(5):JFS2004405-4

    Article  Google Scholar 

  5. Fredericks JD et al (2012) FTIR spectroscopy: a new diagnostic tool to aid DNA analysis from heated bone. Forensic Sci Int Genet 6(3):375–380

    Article  CAS  PubMed  Google Scholar 

  6. Haynes S et al (2002) Bone preservation and ancient DNA: the application of screening methods for predicting DNA survival. J Archaeol Sci 29(6):585–592

    Article  Google Scholar 

  7. Kontopoulos I et al (2019) Petrous bone diagenesis: a multi-analytical approach. Palaeogeogr Palaeoclimatol Palaeoecol 518:143–154

    Article  Google Scholar 

  8. Leskovar T et al (2020) ATR-FTIR spectroscopy combined with data manipulation as a pre-screening method to assess DNA preservation in skeletal remains. Forensic Sci Int Genet 44:102196

    Article  CAS  PubMed  Google Scholar 

  9. Schwarz C et al (2009) New insights from old bones: DNA preservation and degradation in permafrost preserved mammoth remains. Nucleic Acids Res 37(10):3215–3229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wadsworth C et al (2017) Comparing ancient DNA survival and proteome content in 69 archaeological cattle tooth and bone samples from multiple European sites. J Proteome 158:1–8

    Article  CAS  Google Scholar 

  11. Rubio L et al (2018) Dental color measurement to predict DNA concentration in incinerated teeth for human identification. PLoS One 13(4):e0196305

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sosa C et al (2013) Association between ancient bone preservation and DNA yield: A multidisciplinary approach. Am J Phys Anthropol 151(1):102–109

    Article  CAS  PubMed  Google Scholar 

  13. Higgins D et al (2013) Targeted sampling of cementum for recovery of nuclear DNA from human teeth and the impact of common decontamination measures. Investig Genet 4(1):18

    Article  PubMed  PubMed Central  Google Scholar 

  14. Higgins D et al (2015) Differential nuclear and mitochondrial DNA preservation in post-mortem teeth with implications for forensic and ancient DNA studies. PLoS One 10(5):e0126935

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dobberstein RC et al (2008) Degradation of biomolecules in artificially and naturally aged teeth: implications for age estimation based on aspartic acid racemization and DNA analysis. Forensic Sci Int 179(2-3):181–191

    Article  CAS  PubMed  Google Scholar 

  16. Latham KE, Miller JJ (2019) DNA recovery and analysis from skeletal material in modern forensic contexts. Forensic Sci Res 4(1):51–59

    Article  PubMed  Google Scholar 

  17. De Boer HH et al (2018) DNA identification of human remains in Disaster Victim Identification (DVI): an efficient sampling method for muscle, bone, bone marrow and teeth. Forensic Sci Int 289:253–259

    Article  PubMed  Google Scholar 

  18. Biesecker LG et al (2005) DNA Identifications after the 9/11 World Trade Center Attack. Science 310(5751):1122–1123

    Article  CAS  PubMed  Google Scholar 

  19. Hartman D et al (2011) The contribution of DNA to the disaster victim identification (DVI) effort. Forensic Sci Int 205(1-3):52–58

    Article  CAS  PubMed  Google Scholar 

  20. Higgins D, Austin JJ (2013) Teeth as a source of DNA for forensic identification of human remains: A Review. Sci Justice 53(4):433–441

    Article  CAS  PubMed  Google Scholar 

  21. Robinson F, Rueggeberg F, Lockwood P (1998) Thermal stability of direct dental esthetic restorative materials at elevated temperatures. J Forensic Sci 43(6):1163–1167

    Article  CAS  PubMed  Google Scholar 

  22. Driessens FCM, Verbeeck RMH (1990) Biominerals. CRC Press, Boca Raton, p 428

    Google Scholar 

  23. Adler CJ et al (2011) Survival and recovery of DNA from ancient teeth and bones. J Archaeol Sci 38(5):956–964

    Article  Google Scholar 

  24. Grunenwald A et al (2014) Adsorption of DNA on biomimetic apatites: Toward the understanding of the role of bone and tooth mineral on the preservation of ancient DNA. Appl Surf Sci 292:867–875

    Article  CAS  Google Scholar 

  25. Brundin M et al (2013) DNA Binding to hydroxyapatite: a potential mechanism for preservation of microbial DNA. J Endod 39(2):211–216

    Article  PubMed  Google Scholar 

  26. Bernardi G (1965) Chromatography of nucleic acids on hydroxyapatite. Nature 206(4986):779–783

    Article  CAS  PubMed  Google Scholar 

  27. Tütken T, Vennemann TW (2011) Fossil bones and teeth: preservation or alteration of biogenic compositions? Palaeogeogr Palaeoclimatol Palaeoecol 310(1):1-8

  28. Salamon M et al (2005) Relatively well preserved DNA is present in the crystal aggregates of fossil bones. Proc Natl Acad Sci U S A 102(39):13783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alaeddini R, Walsh SJ, Abbas A (2010) Forensic implications of genetic analyses from degraded DNA—a review. Forensic Sci Int Genet 4(3):148–157

    Article  CAS  PubMed  Google Scholar 

  30. Hofreiter M et al (2001) Ancient DNA. Nat Rev Genet 2(5):353–359

    Article  CAS  PubMed  Google Scholar 

  31. Trueman CN, Martill DM (2002) The long–term survival of bone: the role of bioerosion. Archaeometry 44(3):371–382

    Article  CAS  Google Scholar 

  32. Okazaki M et al (2001) Affinity binding phenomena of DNA onto apatite crystals. Biomaterials 22(18):2459–2464

    Article  CAS  PubMed  Google Scholar 

  33. del Valle LJ et al (2014) DNA adsorbed on hydroxyapatite surfaces. J Mater Chem B 2(40):6953–6966

    Article  PubMed  Google Scholar 

  34. Doebelin N, Kleeberg R (2015) Profex: a graphical user interfacefor the Rietveld refinement program BGMN. J Appl Crystallogr 48(Pt 5):1573–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Antinick TC, Foran DR (2019) Intra- and inter-element variability in mitochondrial and nuclear DNA from fresh and environmentally exposed skeletal remains. J Forensic Sci 64(1):88–97

    Article  CAS  PubMed  Google Scholar 

  36. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  37. Wei T et al (2017) Visualization of a correlation matrix, in Package “corrplot”

    Google Scholar 

  38. Rahmat RA et al (2020) Integrating spectrophotometric and XRD analyses in the investigation of burned dental remains. Forensic Sci Int 310:110–236

    Article  Google Scholar 

  39. Rees KA, Cox MJ (2010) Comparative analysis of the effects of heat on the PCR-amplification of various sized DNA fragments extracted from Sus Scrofa molars. J Forensic Sci 55(2):410–417

    Article  CAS  PubMed  Google Scholar 

  40. Garriga JA, Ubelaker DH, Zapico SC (2016) Evaluation of macroscopic changes and the efficiency of DNA profiling from burnt teeth. Sci Justice

  41. Thompson TJU (2005) Heat-induced dimensional changes in bone and their consequences for forensic anthropology. J Forensic Sci 50(5):1008–1015

    Article  CAS  PubMed  Google Scholar 

  42. Sakae T et al (1995) Thermal stability of mineralized and demineralized dentin: a differential scanning calorimetric study. Connect Tissue Res 33(1-3):193–196

    Article  CAS  PubMed  Google Scholar 

  43. Latham KE, Madonna ME (2013) DNA survivability in skeletal remains. In: Pokines J, Symes SA (eds) Manual of forensic taphonomy. CRC Press, Boca Raton, pp 385–407

    Google Scholar 

  44. Shipman P, Foster G, Schoeninger M (1984) Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage. J Archaeol Sci 11(4):307–325

    Article  Google Scholar 

  45. Sandholzer M (2014) Heat-induced alterations of dental tissues. ProQuest Dissertations Publishing

    Google Scholar 

  46. Kubisz L, Mielcarek S (2005) Differential scanning calorimetry and temperature dependence of electric conductivity in studies on denaturation process of bone collagen. J Non-Cryst Solids 351(33):2935–2939

    Article  CAS  Google Scholar 

  47. Obal M et al (2019) Different skeletal elements as a source of DNA for genetic identification of Second World War victims. Forensic Sci Int Genet Suppl Ser 7(1):27–29

    Article  Google Scholar 

  48. Alonso A et al (2004) Real-time PCR designs to estimate nuclear and mitochondrial DNA copy number in forensic and ancient DNA studies. Forensic Sci Int 139(2):141–149

    Article  CAS  PubMed  Google Scholar 

  49. Swango KL et al (2006) A quantitative PCR assay for the assessment of DNA degradation in forensic samples. Forensic Sci Int 158(1):14–26

    Article  CAS  PubMed  Google Scholar 

  50. Emery MV et al (2020) Reconstructing full and partial STR profiles from severely burned human remains using comparative ancient and forensic DNA extraction techniques. Forensic Sci Int Genet:46

  51. Ricaut FX et al (2005) STR-genotyping from human medieval tooth and bone samples. Forensic Sci Int 151(1):31–35

    Article  CAS  PubMed  Google Scholar 

  52. Sobrino B, Brion M, Carracedo A (2005) SNPs in forensic genetics: a review on SNP typing methodologies. Forensic Sci Int:181

  53. Budowle B, van Daal A (2008) Forensically relevant SNP classes. BioTechniques 44(5):603–610

    Article  CAS  PubMed  Google Scholar 

  54. Bender K, Schneider PM, Rittner C (2000) Application of mtDNA sequence analysis in forensic casework for the identification of human remains. Forensic Sci Int 113(1):103–107

    Article  CAS  PubMed  Google Scholar 

  55. Rubio L et al (2009) Study of short- and long-term storage of teeth and its influence on DNA. J Forensic Sci 54(6):1411–1413

    Article  CAS  PubMed  Google Scholar 

  56. Mundorff AZ, Bartelink EJ, Mar-Cash E (2009) DNA preservation in skeletal elements from the World Trade Center disaster: recommendations for mass fatality management. J Forensic Sci 54(4):739–745

    Article  CAS  PubMed  Google Scholar 

  57. Robinson C et al (1988) Mineral and protein concentrations in enamel of the developing permanent porcine dentition. Caries Res 22(6):321–326

    Article  CAS  PubMed  Google Scholar 

  58. Piga G et al (2013) Is X-ray diffraction able to distinguish between animal and human bones? J Archaeol Sci 40(1):778–785

    Article  CAS  Google Scholar 

  59. Matuszewski S et al (2020) Pigs vs people: the use of pigs as analogues for humans in forensic entomology and taphonomy research. Int J Legal Med 134:793–810

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The main author would like to acknowledge Associate Professor Jeremy Austin and the Advanced DNA Identification & Forensic Facility (ADIFF), The University of Adelaide, for providing supervision, laboratory space, and equipment to conduct the DNA work.

Sincere gratitude to Professor Robert Fitzpatrick and Mr. Mark Raven from the Acid Sulfate Soils Centre (ASSC) | Centre for Australian Forensic Soil Science (CAFSS), The University of Adelaide, for providing expertise, facility and equipment for the sample incineration and XRD analysis at Water and Land, CSIRO, Waite, South Australia. The first author would like to give a special thanks to Mr. Anthony Wilkes from the School of Animal and Veterinary Sciences, The University of Adelaide, for providing the technical assistance in preparing the samples.

Funding

This work was financially supported by the School of Biological Sciences, The University of Adelaide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabiah A. Rahmat.

Ethics declarations

Ethical approval

The handling of the animal remains was conducted according to the University of Adelaide Animal Ethics.

Research involving human participants and/or animals

This research involved animal carcasses.

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 553 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmat, R.A., Humphries, M.A., Saedon, N.A. et al. Diagnostic models to predict nuclear DNA and mitochondrial DNA recovery from incinerated teeth. Int J Legal Med 137, 1353–1360 (2023). https://doi.org/10.1007/s00414-023-03017-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-023-03017-x

Keywords

Navigation