Skip to main content

Advertisement

Log in

Improving kinship probability in analysis of ancient skeletons using identity SNPs and MPS technology

  • Case Report
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

In forensic kinship analysis and human identification cases, analysis of STRs is the gold standard. When badly preserved ancient DNA is used for kinship analysis, short identity SNPs are more promising for successful amplification. In this work, kinship analysis was performed on two skeletons from the Early Middle Ages. The surface contaminants of petrous bones were removed by chemical cleaning and UV irradiation; DNA was isolated through full demineralization and purified in an EZ1 Advanced XL machine. The PowerQuant kit was used to analyze DNA yield and degradation, and on average, 17 ng DNA/g of petrous bone was obtained. Both skeletons were typed in duplicate for STR markers using the Investigator EssplexPlus SE QS kit, and comparison of partial consensus genotypes showed shared allelic variants at most loci amplified, indicating close kinship. After statistical calculation, the full-sibling kinship probability was too low for kinship confirmation, and additional analyses were performed with PCR-MPS using the Precision ID Identity Panel. The HID Ion Chef Instrument was used to prepare the libraries and for templating and the Ion GeneStudio S5 System for sequencing. Analysis of identity SNPs produced full genetic profiles from both skeletons. For combined likelihood ratio (LR) calculation, the product rule was used, combining LR for STRs and LR for SNPs, and a combined LR of 3.3 × 107 (corresponding to a full-sibling probability of 99.999997%) was calculated. Through the SNP PCR-MPS that followed the STR analysis, full-sibling kinship between the ancient skeletons excavated from an early medieval grave was confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The authors declare that all the data are available.

References

  1. Gill P, Haned H, Bleka O, Hansson O, Dørum G, Egeland T (2015) Genotyping and interpretation of STR-DNA: low template, mixtures and database matches -Twenty years of research and development. Forensic Sci Int Genet 18:100–117

    Article  CAS  PubMed  Google Scholar 

  2. McCord BR, Gauthier Q, Cho S, Roig MN, Gibson-Daw GC et al (2019) Forensic DNA Analysis. Anal Chem 91:673–688

    Article  CAS  PubMed  Google Scholar 

  3. Campos PF, Craig OE, Turner-Walker G, Peacock E, Willerslev E, Gilbert MTP (2012) DNA in ancient bone - where is it located and how should we extract it? Ann Anat 194:7–16

    Article  CAS  PubMed  Google Scholar 

  4. Poinar HN, Hoss M, Bada JL, Pääbo S (1996) Amino acid racemisation and the preservation of ancient DNA. Science 272:864–866

    Article  CAS  PubMed  Google Scholar 

  5. Schwarz C, Debruyne R, Kuch M, McNally E, Schwarcz H, Aubrey AD et al (2009) New insights from old bones: DNA preservation and degradation in permafrost preserved mammoth remains. Nucleic Acids Res 37:3215–3229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Siriboonpiputtanaa T, Rinthachaia T, Shotivaranona J, Peonimb V, Rerkamnuaychokea B (2018) Forensic genetic analysis of bone remain samples. Forensic Sci Int 284:167–175

    Article  Google Scholar 

  7. Keyser-Tracqui C, Ludes B (2005) Methods for the study of Ancient DNA. In: Carracedo A (ed) Forensic DNA typing protocols. Humana Press Inc, New York, pp 253–264

    Google Scholar 

  8. Sampietro ML, Gilbert MTP, Lao O, Caramelli D, Lari M, Bertranpetit J et al (2006) Tracking down human contamination in ancient human teeth. Mol Biol Evol 23:1801–1807

    Article  CAS  PubMed  Google Scholar 

  9. Cooper A, Poinar HN (2000) Ancient DNA: do it right or not at all. Science 289:1139

    Article  CAS  PubMed  Google Scholar 

  10. Furtwängler A, Reiter E, Neumann GU, Siebke I, Steuri N, Hafner A et al (2018) Ratio of mitochondrial to nuclear DNA affects contamination estimates in ancient DNA analysis. Sci Rep 8:14075

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pääbo S, Poinar H, Serre D, Jaenicke-Després V, Hebler J, Rohland N et al (2004) Genetic analyses from Ancient DNA. Annu Rev Genet 38:645–679

    Article  PubMed  Google Scholar 

  12. Budowle B, van Daal A (2008) Forensically relevant SNP classes. Biotechniques 44:603–608

    Article  CAS  PubMed  Google Scholar 

  13. Butler JM, Coble MD, Vallone PM (2007) STRs vs. SNPs: thoughts on the future of forensic DNA testing. Forensic Sci Med Pathol 3:200–205

    Article  CAS  PubMed  Google Scholar 

  14. Sobrino B, Briòn M, Carracedo A (2005) SNPs in forensic genetics: a review on SNP typing methodologies. Forensic Sci Int 154:181–194

    Article  CAS  PubMed  Google Scholar 

  15. Zupanič Pajnič I, Gornjak-Pogorelc B, Balažic J (2010) Molecular genetic identification of skeletal remains from the Second world war Konfin I mass grave in Slovenia. Int J Legal Med 124:307–317

    Article  PubMed  PubMed Central  Google Scholar 

  16. Børsting C, Morling N (2015) Next generation sequencing and its applications in forensic genetics. Forensic Sci Int Genet 18:78–89

    Article  PubMed  Google Scholar 

  17. Kulstein G, Hadrys T, Wiegand P (2018) As solid as a rock-comparison of CE- and MPS-based analyses of the petrosal bone as a source of DNA for forensic identification of challenging cranial bones. Int J Legal Med 132:13–24

    Article  PubMed  Google Scholar 

  18. Ballard D, Winkler-Galicki J, Wesoły J (2020) Massive parallel sequencing in forensics: advantages, issues, technicalities, and prospects. Int J Legal Med 134:1291–1303

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bruijns B, Tiggelaar R, Gardeniers H (2018) Massively parallel sequencing techniques for forensics: a review. Electrophoresis 39:2642–2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Børsting C, Fordyce SL, Olofsson J, Mogensen HS, Morling N (2014) Evaluation of the Ion Torrent HID SNP 169-plex: a SNP typing assay developed for human identification by second generation sequencing. Forensic Sci Int Genet 12:144–154

    Article  PubMed  Google Scholar 

  21. Buchard A, Kampmann ML, Poulsen L, Børsting C, Morling N (2016) ISO 17025 validation of a next-generation sequencing assay for relationship testing. Electrophoresis 37:2822–2831

    Article  CAS  PubMed  Google Scholar 

  22. Meiklejohn KA, Robertson JM (2017) Evaluation of the precision ID identity panel for the Ion TorrentTM PGMTM sequencer. Forensic Sci Int Genet 31:48–56

    Article  CAS  PubMed  Google Scholar 

  23. Gettings KB, Kiesler KM, Vallone PM (2015) Performance of a next generation sequencing SNP assay on degraded DNA. Forensic Sci Int Genet 19:1–9

    Article  CAS  PubMed  Google Scholar 

  24. Salata E, Agostino A, Ciuna I, Wootton S, Ripani L, Berti A (2016) Revealing the challenges of low template DNA analysis with the prototype Ion AmpliSeqTM Identity panel v2.3 on the PGMTM Sequencer. Forensic Sci Int Genet 22:25–36

    Article  Google Scholar 

  25. Turchi C, Previderè C, Bini C, Carnevali EP, Grignani P et al (2020) Assessment of the Precision ID Identity Panel kit on challenging forensic samples. Forensic Sci Int Genet 49:102400

    Article  CAS  PubMed  Google Scholar 

  26. Christiansen SL, Jakobsen B, Børsting C, Udengaard H, Buchard A, Kampmann ML et al (2019) Non-invasive prenatal paternity testing using a standard forensic genetic massively parallel sequencing assay for amplification of human identification SNPs. Int J Legal Med 133:1361–1368

    Article  PubMed  Google Scholar 

  27. Kidd KK, Pakstis AJ, Speed WC, Grigorenko EL, Kajuna SL, Karoma NJ, Kungulilo S, Kim JJ et al (2006) Developing a SNP panel for forensic identification of individuals. Forensic Sci. Int 164:20–32

    Article  CAS  PubMed  Google Scholar 

  28. Bello S, Andrews P (2006) The intrinsic pattern of preservation of human skeletons and its influence on the interpretation of funerary behaviours. In: Gowland R, Knüsel C (eds) Social archaeology of funerary remains. Oxbow Books Oxford, pp 1–13

    Google Scholar 

  29. Djurić M, Djukić K, Milovanović P et al (2011) Representing children in excavated cemeteries: the intrinsic preservation factors. Antiquity 85:250–262

    Article  Google Scholar 

  30. Morton RJ, Lord WD (2006) Taphonomy of child-sized remains: a study of scattering and scavenging in Virginia, USA. J Forensic Sci 51:475–479

    Article  PubMed  Google Scholar 

  31. Saunders SR, Barrans L (1999) What can be done about the infant category in skeletal samples? Camb S Bio Evol Anthr:183–209

  32. Tierney SN, Bird JM (2015) Molecular sex identification of juvenile skeletal remains from an Irish medieval population using ancient DNA analysis. J Archaeol Sci 62:27–38

    Article  CAS  Google Scholar 

  33. Edson SM, Ross JP, Coble MD, Parson TJ, Barritt SM (2004) Naming the dead: confronting the realities of rapid identification of degraded skeletal remains. Forensic Sci Rev 16:63–90

    CAS  PubMed  Google Scholar 

  34. Emmons AL, Davoren J, DeBruyn JM, Mundorff AZ (2020) Inter and intra-individual variation in skeletal DNA preservation in buried remains. Forensic Sci Int Genet 44:102193. https://doi.org/10.1016/j.fsigen.2019.102193

    Article  CAS  PubMed  Google Scholar 

  35. Hines DZC, Vennemeyer M, Amory S, Huel R, Hanson I, Katzmarzyk C et al (2014) Prioritizing sampling of bone and teeth for DNA analysis in commingled cases. In: Adams BJ, Byrd JE (eds) Commingled human remains: methods in recovery, analysis, and identification. Elsevier Inc, pp 275–305

    Chapter  Google Scholar 

  36. Montelius K, Lindblom B (2012) DNA analysis in disaster victim identification. Forensic Sci Med Pathol 8:140–147

    Article  CAS  PubMed  Google Scholar 

  37. Mundorff A, Davoren JM (2014) Examination of DNA yield rates for different skeletal elemenets at increasing post mortem intervals. Forensic Sci Int Genet 8:55–63

    Article  CAS  PubMed  Google Scholar 

  38. Zupanc T, Zupanič Pajnič I, Podovšovnik E, Obal M (2021) High DNA yield from metatarsal and metacarpal bones from Slovenian Second World War skeletal remains. Forensic Sci Int Genet 51:102426. https://doi.org/10.1016/j.fsigen.2020.102426

    Article  CAS  PubMed  Google Scholar 

  39. Gamba C, Jones ER, Teasdale MD, McLaughlin RL, Gonzalez-Fortes G, Mattiangeli V et al (2014) Genome flux and stasis in a five millennium transect of European prehistory. Nat Commun 5:5257

    Article  CAS  PubMed  Google Scholar 

  40. Geigl EM, Grange T (2018) Ancient DNA: The quest for the best. Mol Ecol Resour 18:1185–1187

    Article  CAS  PubMed  Google Scholar 

  41. Haber M, Doumet-Serhal C, Scheib C, Xue Y, Danecek P, Mezzavilla M et al (2017) Continuity and admixture in the last five millennia of Levantine history from Ancient Canaanite. Am J Human Gen 101:274–282

    Article  CAS  Google Scholar 

  42. Hansen HB, Damgaard PB, Margaryan A, Stenderup J, Lynnerup N, Willerslev E et al (2017) Comparing ancient DNA preservation in petrous bone and tooth cementum. PLoS One 12:e0170940

    Article  PubMed  PubMed Central  Google Scholar 

  43. Parker C, Rohrlach AB, Friederich S, Nagel S, Meyer M, Krause J et al (2020) A systematic investigation of human DNA preservation in medieval skeletons. Sci Rep 10:18225. https://doi.org/10.1038/s41598-020-75163-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pilli E, Vai S, Caruso MG, D'Errico G, Berti A, Caramelli D (2018) Neither femur nor tooth: petrous bone for identifying archaeological bone samples via forensic approach. Forensic Sci Int 283:144–149

    Article  CAS  PubMed  Google Scholar 

  45. Pinhasi R, Fernandes D, Sirak K, Novak M, Connell S, Alpaslan-Roodenberg S et al (2015) Optimal ancient DNA yields from the inner ear part of the human petrous bone. PLoS One 10:e0129102

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sirak K, Fernandes D, Cheronet O, Harney E, Mah M, Mallick S et al (2020) Human auditory ossicles as an alternative optimal source of ancient DNA. Genome Res 30:427–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rohland N, Hofreiter M (2007) Ancient DNA extraction from bones and teeth. Nat Protoc 2:1756

    Article  CAS  PubMed  Google Scholar 

  48. Parson W, Gusmão L, Hares DR, Irwin JA, Mayr WR, Morling N et al (2014) DNA Commission of the International Society for Forensic Genetics: revised and extended guidelines for mitochondrial DNA typing. Forensic Sci Int Genet 13:134–142

    Article  CAS  PubMed  Google Scholar 

  49. Pinhasi R, Fernandes DM, Sirak K, Cheronet O (2019) Isolating the human cochlea to generate bone powder for ancient DNA analysis. Nat Protoc 14:1194–1205

    Article  CAS  PubMed  Google Scholar 

  50. Zupanič PI (2016) Extraction of DNA from human skeletal material. In: Goodwin W (ed) Forensic DNA typing protocols, methods in molecular biology, vol 1420. Springer Science&Business, Media, LLC, New York, pp 89–108

    Chapter  Google Scholar 

  51. Prinz M, Carracedo A, Mayr WR, Morling N, Parsons TJ, Sajantila A et al (2007) International Society for Forensic Genetics. DNA Commission of the International Society for Forensic Genetics (ISFG):recommendations regarding the role of forensic genetics for disaster victim identification (DVI). Forensic Sci Int Genet 1:3–12

    Article  CAS  PubMed  Google Scholar 

  52. Corporation P (2022) PowerQuant System technical manual. Madison, WI

    Google Scholar 

  53. Qiagen Companies, Investigator ESSplex SE QS handbook, 2021, Hilden

  54. Thermo Fisher Scientific (2019) Identity Thermo Fisher Scientific, Precision ID SNP Panel with the HID Ion S5TM/HID Ion GeneStudioTM S5 System, application guide, MAN0017767. Carlsbad, CA

    Google Scholar 

  55. Hussing C, Kampmann ML, Smidt Mogensen H, Børsting C, Morling N (2018) Quantification of massively parallel sequencing libraries – a comparative study of eight methods. Sci Rep 8:1110

    Article  PubMed  PubMed Central  Google Scholar 

  56. Thermo Fisher Scientific (2018) Torrent Suite™ Software 5.10, user guide, MAN0017598, Carlsbad, CA

  57. Thermo Fisher Scientific (2017) Waltham. MA. Converge Software. Setup and reference guide, Carlsbad, CA

    Google Scholar 

  58. Brenner CH, DNA-VIEW (2007) User Guide. Oakland (CA) 2007

  59. Zupanič I, Balažic J, Komel R (1998) Analysis of nine short tandem repeat (STR) loci in the Slovenian population. Int J Legal Med 11:248–250

    Google Scholar 

  60. Zupanič Pajnič I, Podovšovnik Axelsson E, Balažic J (2014) Slovenian population data for five new European Standard Set short tandem repeat loci and SE33 locus. Croat Med J 55:14–18

    Article  PubMed Central  Google Scholar 

  61. Zupanič Pajnič I, Šterlinko H, Balažic J et al (2001) Parentage testing with 14 STR loci and population data for 5 STRs in the Slovenian population. Int J Legal Med 114:178–180

    Article  PubMed  Google Scholar 

  62. Walsh B, Redd AJ, Hammer MF (2008) Joint match probabilities for Y chromosomal and autosomal markers. Forensic Sci Int 174:234–238

    Article  CAS  PubMed  Google Scholar 

  63. Montpetit SA, Fitch IT, O'Donnell PT (2005) A simple automated instrument for DNA extraction in forensic casework. J Forensic Sci 50:555–563

    Article  CAS  PubMed  Google Scholar 

  64. Ewing MM, Thompson JM, McLaren RS, Purpero VM, Thomas KJ, Dobrowski PA et al (2016) Human DNA quantification and sample assessment: Developmental validation of the PowerQuant system. Forensic Sci Int Genet 23:166–177

    Article  CAS  PubMed  Google Scholar 

  65. Taberlet P, Griffin S, Goossens B, Questiau S, Manceau S et al (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 24:3189–3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bright JA, Gill P, Buckleton J (2012) Composite profiles in DNA analysis. Forensic Sci Int Genet 6:317–321

    Article  CAS  PubMed  Google Scholar 

  67. Eduardoff M, Santos C, de la Puente M, Gross TE, Fondevila M, Strobl C et al (2015) Inter-laboratory evaluation of SNP-based forensic identification by massively parallel sequencing using the Ion PGM™. Forensic Sci Int Genet 17:110–121

    Article  CAS  PubMed  Google Scholar 

  68. Buckberry J (2018) Techniques for identifying the age and sex of children at death. In: Crawford S, Hadley D, Shepherds G (eds) The Oxford handbook of the archaeology of childhood. Oxford Handbooks Collection. Oxford, Oup, pp 55–70

    Google Scholar 

  69. Stull KE, Cirillo LE, Cole SJ, Hulse CN (2020) Chapter 14 - Subadult sex estimation and KidStats. In: Klales AR (ed) Sex estimation of the human skeleton. Academic Press, pp 219–242. https://doi.org/10.1016/B978-0-12-815767-1.00014-6

    Chapter  Google Scholar 

  70. Biesecker LG, Bailey-Wilson JE, Ballantyne J, Baum H, Bieber FR, Brenner C et al (2005) DNA identifications after the 9/11 World Trade Center attack. Science 310:1122–1123

    Article  CAS  PubMed  Google Scholar 

  71. Brenner CH, Weir BS (2003) Issues and strategies in the DNA identification of World Trade Center victims. Theoret Popul Biol 63:173–178

    Article  CAS  Google Scholar 

  72. Poetsch M, Lüdcke C, Repenning A, Fischer L, Mályusz V, Simeoni E et al (2006) The problem of single parent/child paternity analysis-practical results involving 336 children and 348 unrelated men. Forensic Sci Int 159:98–103

    Article  PubMed  Google Scholar 

  73. von Wurmb-Schwark N, Mályusz V, Simeoni E, Lignitz E, Poetsch M (2006) Possible pitfalls in motherless paternity analysis with related putative fathers. Forensic Sci Int 159:92–97

    Article  Google Scholar 

  74. Zhang MX, Gao HM, Han SY, Liu Y, Tian YL, Sun SH et al (2014) Risk analysis of duo parentage testing with limited STR loci. Genet Mol Res 13:1179–1186

    Article  CAS  PubMed  Google Scholar 

  75. Chen L, Tai Y, Qiu P, Du W, Liu C (2015) A silent allele in the locus D5S818 contained within the PowerPlex®21 PCR Amplification Kit. Leg Med (Tokyo) 17:509–511

    Article  PubMed  Google Scholar 

  76. Huel RL, Basić L, Madacki-Todorović K, Smajlović L, Eminović I, Berbić I et al (2007) Variant alleles, triallelic patterns, and point mutations observed in nuclear short tandem repeat typing of populations in Bosnia and Serbia. Croat Med J 48:494–502

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Jia YS, Zhang L, Qi LY, Mei K, Zhou FL, Huang DX et al (2015) Multistep microsatellite mutation leading to father-child mismatch of FGA locus in a case of non-exclusion parentage. Leg Med (Tokyo) 17:364–365

    Article  CAS  PubMed  Google Scholar 

  78. Narkuti V, Vellanki RN, Gandhi KP, Mangamoori LN (2007) Mother-child double incompatibility at vWA and D5S818 loci in paternity testing. Clin Chem Lab Med 45:1288–1291

    Article  CAS  PubMed  Google Scholar 

  79. Tsuji A, Ishiko A, Umehara T, Usumoto Y, Hikiji W, Kudo K et al (2010) A silent allele in the locus D19S433 contained within the AmpFlSTR Identifiler PCR Amplification Kit. Leg Med (Tokyo) 12:94–96

    Article  CAS  PubMed  Google Scholar 

  80. Børsting C, Sanchez JJ, Hansen HE, Hansen AJ, Bruun HQ, Morling N (2008) Performance of the SNPforID 52 SNP-plex assay in paternity testing. Forensic Sci Int Genet 2:292–300

    Article  PubMed  Google Scholar 

  81. Chang L, Yu H, Miao X, Wen S, Zhang B, Li S (2021) Evaluation of a custom SNP panel for identifying and rectifying of misjudged paternity in deficiency cases. Front Genet 12:602429. https://doi.org/10.3389/fgene.2021.602429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lindner I, von Wurmb-Schwark N, Meier P, Fimmers R, Büttner A (2014) Usefulness of SNPs as supplementary markers in a paternity case with 3 genetic incompatibilities at autosomal and Y chromosomal loci. Transfus Med Hemother 41:117–121

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zupanič Pajnič I, Fattorini P (2021) Strategy for STR typing of bones from the Second World War combining CE and NGS technology: a pilot study. Forensic Sci Int Genet 50:10401

    Article  Google Scholar 

  84. Zupanič Pajnič I, Obal M, Zupanc T (2020) Identifying victims of the largest Second World War family massacre in Slovenia. Forensic Sci Int 306:1–8

    Article  Google Scholar 

  85. Zupanič Pajnič I, Petaros A, Balažic J, Geršak K (2016) Searching for the mother missed since the Second World War. J Forensic Legal Med 44:138–142

    Article  Google Scholar 

  86. Gonzalez A, Cannet C, Zvénigorosky V, Geraut A, Koch G et al (2020) The petrous bone: ideal substrate in legal medicine? Forensic Sci Int Genet 47:102305

    Article  CAS  PubMed  Google Scholar 

  87. Šuligoj A, Mesesnel S, Leskovar T, Podovšovnik E, Zupanič PI (2022) Comparison of DNA preservation between adult and non-adult ancient skeletons. Int J Legal Med 136:1521–1539. https://doi.org/10.1007/s00414-022-02881-3

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ljubljana National Museum, especially dr. Timotej Knific, for including the archaeological human remains from the museum into our study. We also thank Prof. Paolo Fattorini for the calculation of full-sib kinship probability for SNPs.

Funding

This study was financially supported by the Slovenian Research Agency (the project “Inferring ancestry from DNA for human identification” J3-3080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Zupanič Pajnič.

Ethics declarations

Ethical approval

This research project was approved by the Medical Ethics Committee of the Republic of Slovenia (102/11/14).

Informed consent

Informed consents of persons included in elimination database were submitted to the Medical Ethics Committee of the Republic of Slovenia.

Conflict of interest

The authors declare no competing interests.

Research involving human participants and/or animals

Research involvs aged skeletons and genetic profiles of persons included in elimination database and from them informed consents were obtained and submitted to the Medical Ethics Committee of the Republic of Slovenia. After submission, the Medical Ethics Committee of the Republic of Slovenia approved the research (number of approval is 102/11/14).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

– STRs are the gold standard in forensics, and identity SNPs are of great importance in ancient DNA kinship analysis.

– STR and SNP analyses were performed on the petrous bones of two early medieval skeletons.

– Partial STR profiles resulted in calculation of a 99.82% probability of full-sibling kinship.

– Full SNP genotypes were obtained from both skeletons using MPS technology.

– With a combination of STRs and SNPs, a high probability (99.999997%) of kinship was attained.

– Identity SNPs improved the probability and confirmed full-sibling kinship between ancient skeletons.

Supplementary information

Supplementary file 1

Table SM 1: PowerQuant results (DNA quantity - Auto target, Deg target and Y target - all expressed in ng DNA in μl of extract , IPC shift and degradation index - DI), and DNA quantity expressed in ng DNA per g of bone powder for petrous bones from two skeletons from the Early Middle Ages, together with extraction negative controls (ENC). Results are shown for two extracts obtained from each skeleton

Supplementary Material 2

Supplementary Material 3

Supplementary Material 4

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zupanič Pajnič, I., Leskovar, T. & Črešnar, M. Improving kinship probability in analysis of ancient skeletons using identity SNPs and MPS technology. Int J Legal Med 137, 1007–1015 (2023). https://doi.org/10.1007/s00414-023-03003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-023-03003-3

Keywords

Navigation