Skip to main content
Log in

Development of Megaselia scalaris at constant temperatures and its significance in estimating the time of death

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Megaselia scalaris (Schmitz, 1938) (Diptera: Phoridae) is a common insect in forensic science that is frequently found in indoor cases, particularly on corpses in closed environments. Although this species is useful for estimating the minimum postmortem interval (PMImin) in the absence of Calliphoridae, there is a lack of data on its development in China. Herein, we studied the development of M. scalaris exposed to seven constant temperatures ranging from 16 to 34 °C. The mean (± SD) developmental durations of M. scalaris from egg to adult stage at 16, 19, 22, 25, 28, 31, and 34 °C were 1486.9 ± 75.3, 823.7 ± 42.8, 448.2 ± 59.8, 417.7 ± 19.7, 297.2 ± 27.3, 272.9 ± 10.4, and 253.0 ± 5.0 h, respectively. The mean (± SE) lower developmental threshold temperature (TL) and the thermal summation constant (K) were determined by a linear model as 12.69 ± 0.3 °C and 4965.8 ± 227.9-degree hours, respectively. A nonlinear model estimated the lower developmental threshold temperature, intrinsic optimum temperature, and upper lethal developmental threshold temperature as 14.58, 21.00, and 34.15 °C, respectively. We established three development models to estimate the age of the immature insect, namely the isomegalen diagram, isomorphen diagram, and thermal summation model. In addition, a regression analysis of the relationship between body length and total development time from hatching to pupariation was performed. Our findings provide a basis for applications of M. scalaris in PMImin estimations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author upon reasonable request.

References

  1. Alibegović A (2014) Cartilage: a new parameter for the determination of the postmortem interval? J Forensic Leg Med 27:39–45. https://doi.org/10.1016/j.jflm.2014.08.005

    Article  PubMed  Google Scholar 

  2. Gennard DE (2007) Forensic entomology: an introduction. John Wiley & Sons, Chichester, England

    Google Scholar 

  3. Anderson GS (2001) Forensic entomology in British Columbia: a brief history. J Entomol Soc Br Columbia 98:127–136

    Google Scholar 

  4. Tomberlin JK, Mohr R, Benbow ME et al (2011) A roadmap for bridging basic and applied research in forensic entomology. Annu Rev Entomol 56:401–421. https://doi.org/10.1146/annurev-ento-051710-103143

    Article  PubMed  CAS  Google Scholar 

  5. Amendt J, Richards CS, Campobasso CP et al (2011) Forensic entomology: applications and limitations. Forensic Sci Med Pathol 7:379–392. https://doi.org/10.1007/S12024-010-9209-2

    Article  PubMed  CAS  Google Scholar 

  6. Wang Y, Wang J, Wang Z, Tao L (2017) Insect succession on pig carcasses using different exposure time - a preliminary study in Guangzhou, China. J Forensic Leg Med 52:24–29. https://doi.org/10.1016/j.jflm.2017.08.002

    Article  PubMed  CAS  Google Scholar 

  7. Martín-Vega D, Gómez-Gómez A, Baz A (2011) The “Coffin Fly”Conicera tibialis (Diptera: Phoridae) breeding on buried human remains after a postmortem interval of 18 years. J Forensic Sci 56:1654–1656. https://doi.org/10.1111/j.1556-4029.2011.01839.x

    Article  PubMed  Google Scholar 

  8. Disney RHL, Manlove JD (2005) First occurrences of the Phorid, Megaselia abdita, in forensic cases in Britain. Med Vet Entomol 19:489–491. https://doi.org/10.1111/j.1365-2915.2005.00593.x

    Article  PubMed  CAS  Google Scholar 

  9. Pohjoismäki JLO, Karhunen PJ, Goebeler S et al (2010) Indoors forensic entomology: colonization of human remains in closed environments by specific species of sarcosaprophagous flies. Forensic Sci Int 199:38–42. https://doi.org/10.1016/j.forsciint.2010.02.033

    Article  PubMed  Google Scholar 

  10. Reibe S, Madea B (2010) How promptly do blowflies colonise fresh carcasses? A study comparing indoor with outdoor locations. Forensic Sci Int 195:52–57. https://doi.org/10.1016/j.forsciint.2009.11.009

    Article  PubMed  CAS  Google Scholar 

  11. Benecke M, Josephi E, Zweihoff R (2004) Neglect of the elderly: forensic entomology cases and considerations. Forensic Sci Int 146:S195–S199. https://doi.org/10.1016/J.FORSCIINT.2004.09.061

    Article  PubMed  Google Scholar 

  12. Campobasso C, Henry R, Disney L, Introna F (2004) A case of Megaselia scalaris (Loew) (Dipt., Phoridae) breeding in a human corpse. Anil Aggrawal’s Internet J Forensic. Med Toxicol 5(1):3–5

    Google Scholar 

  13. Syamsa RA, Omar B, Ahmad FMS et al (2017) Comparative fly species composition on indoor and outdoor forensic cases in Malaysia. J Forensic Leg Med 45:41–46. https://doi.org/10.1016/j.jflm.2016.12.002

    Article  PubMed  Google Scholar 

  14. Sanford MR (2015) Forensic entomology in the medical examiner’s office. Acad Forensic Pathol 5:306–317. https://doi.org/10.23907/2015.034

    Article  Google Scholar 

  15. Goff M (1991) Comparison of insect species associated with decomposing remains recovered inside dwellings and outdoors on the island of Oahu, Hawaii. J Forensic Sci 36:748–753. https://doi.org/10.1520/JFS13085J

    Article  PubMed  CAS  Google Scholar 

  16. Bugelli V, Forni D, Bassi LA et al (2015) Forensic entomology and the estimation of the minimum time since death in indoor cases. J Forensic Sci 60:525–531. https://doi.org/10.1111/1556-4029.12647

    Article  PubMed  Google Scholar 

  17. Reibe S, Madea B (2010) Use of Megaselia scalaris (Diptera: Phoridae) for post-mortem interval estimation indoors. Parasitol Res 106:637–640. https://doi.org/10.1007/s00436-009-1713-5

    Article  PubMed  Google Scholar 

  18. Disney RHLL (2008) Natural history of the scuttle fly, Megaselia scalaris. Annu Rev Entomol 53:39–60. https://doi.org/10.1146/annurev.ento.53.103106.093415

    Article  PubMed  CAS  Google Scholar 

  19. Beaver RA (1987) Biological studies of non-muscoid flies (Diptera) bred from mollusc carrion in Southeast Asia. Med Entomol Zool 38:187–195. https://doi.org/10.7601/MEZ.38.187

    Article  Google Scholar 

  20. Walker TJ (1957) Ecological studies of the arthropods associated with certain decaying materials in four habitats. Ecology 38:262–276. https://doi.org/10.2307/1931685

    Article  Google Scholar 

  21. Disney RHL (1994) Scuttle flies: the Phoridae. Springer, Netherlands, Dordrecht

    Book  Google Scholar 

  22. Yunus A, Ho TN (1980) List of economic pests, host plants, parasites and predators in West Malaysia (1920-1978). Ministry of Agriculture, Malaysian Agri, Kuala Lumpur

    Google Scholar 

  23. Idris AB, Abdullah M (1999) Megaselia scalaris (Loew) (Diptera: Phoridae) in Malaysia. Malayan Nat J 53:345–348 ST-Megaselia scalaris (Loew) (Diptera

    Google Scholar 

  24. Idris AB, Abdullah M, Lin TP (2001) Effect of various diets on the development of scuttle fly, Megaselia scalaris (Loew) (Diptera: Phoridae), larvae and pupae and percent of adult emergence and longevity. Pakistan J Biol Sci 4:321–325. https://doi.org/10.3923/pjbs.2001.321.325

    Article  Google Scholar 

  25. Idris AB, Abdullah M (1997) The phorid fly, Megaselia scalaris (Loew), as a candidate for managing molluscicide-resistant round snail, reported as parasitized by phorid flies Bradybaena similaris (Ferussas). Resist Pest Manag 9:28–29

    Google Scholar 

  26. Solgi R, Dinparast Djadid N, Eslamifar A et al (2017) Morphological and molecular characteristic of Megaselia scalaris (Diptera: Phoridae) larvae as the cause of urinary myiasis. J Med Entomol 54:781–784. https://doi.org/10.1093/jme/tjw204

    Article  PubMed  CAS  Google Scholar 

  27. Singh TS, Rana D (1989) Urogenital myiasis caused by Megaselia scalaris (Diptera: Phoridae): a case report. J Med Entomol 26:228–229. https://doi.org/10.1093/JMEDENT/26.3.228

    Article  PubMed  CAS  Google Scholar 

  28. Sukontason KL, Boonsriwong W, Siriwattanarungsee S et al (2006) Morphology of puparia of Megaselia scalaris (Diptera: Phoridae), a fly species of medical and forensic importance. Parasitol Res 98:268–272. https://doi.org/10.1007/s00436-005-0052-4

    Article  PubMed  Google Scholar 

  29. Harrison DA, Cooper RL (2003) Characterization of development, behavior and neuromuscular physiology in the phorid fly, Megaselia scalaris. Comp Biochem Physiol - A Mol Integr Physiol 136:427–439. https://doi.org/10.1016/S1095-6433(03)00200-9

    Article  PubMed  CAS  Google Scholar 

  30. Greenberg B, Wells JD (1998) Forensic use of Megaselia abdita and M. scalaris (Phoridae: Diptera): case studies, development rates, and egg structure. J Med Entomol 35(3):205–209

    Article  PubMed  CAS  Google Scholar 

  31. Zuha RM, Omar B (2014) Developmental rate, size, and sexual dimorphism of Megaselia scalaris (Loew) (Diptera: Phoridae): its possible implications in forensic entomology. Parasitol Res 113:2285–2294. https://doi.org/10.1007/s00436-014-3883-z

    Article  PubMed  Google Scholar 

  32. Miranda-Miranda E, Cossio-Bayugar R, Martinez-Ibañez F, Bautista-Garfias CR (2011) Megaselia scalaris reared on Rhipicephalus (Boophilus) microplus laboratory cultures. Med Vet Entomol 25:344–347. https://doi.org/10.1111/j.1365-2915.2010.00930.x

    Article  PubMed  CAS  Google Scholar 

  33. Prawirodisastro M, Benjamin DM (1979) Laboratory study on the biology and ecology of Megaselia scalaris (Diptera: Phoridae). J Med Entomol 16:317–320. https://doi.org/10.1093/jmedent/16.4.317

    Article  PubMed  CAS  Google Scholar 

  34. Trumble JT, Pienkowski RL (1979) Development and survival of Megaselia scalaris (Diptera, Phoridae) at selected temperatures and photoperiods. Proc Entomol Soc Wash 81:207–210

    Google Scholar 

  35. Zuha RM, Ankasha SJ, Disney RHL, Omar B (2016) Indoor decomposition study in Malaysia with special reference to the scuttle flies (Diptera: Phoridae). Egypt J Forensic Sci 6:216–222. https://doi.org/10.1016/j.ejfs.2015.09.002

    Article  Google Scholar 

  36. Hu Y, Yuan X, Zhu F, Lei C (2010) Development time and size-related traits in the oriental blowfly, Chrysomya megacephala along a latitudinal gradient from China. J Therm Biol 35:366–371. https://doi.org/10.1016/j.jtherbio.2010.07.006

    Article  Google Scholar 

  37. Gallagher MB, Sandhu S, Kimsey R (2010) Variation in developmental time for geographically distinct populations of the common green bottle fly, Lucilia sericata (Meigen). J Forensic Sci 55:438–442. https://doi.org/10.1111/j.1556-4029.2009.01285.x

    Article  PubMed  Google Scholar 

  38. Wang Y, Zhang Y, Hu G et al (2020) Development of Megaselia spiracularis (Diptera: Phoridae) at different constant temperatures. J Therm Biol 93:102722. https://doi.org/10.1016/j.jtherbio.2020.102722

    Article  PubMed  CAS  Google Scholar 

  39. Ikemoto T, Takai K (2000) A new linearized formula for the law of total effective temperature and the evaluation of line-fitting methods with both variables subject to error. Environ Entomol 29:671–682. https://doi.org/10.1603/0046-225X-29.4.671

    Article  Google Scholar 

  40. Shi P, Ikemoto T, Egami C et al (2011) A modified program for estimating the parameters of the SSI model. Environ Entomol 40:462–469. https://doi.org/10.1603/EN10265

    Article  Google Scholar 

  41. Vasconcelos SD, Soares TF, Costa DL (2014) Multiple colonization of a cadaver by insects in an indoor environment: first record of Fannia trimaculata (Diptera: Fanniidae) and Peckia (Peckia) chrysostoma (Sarcophagidae) as colonizers of a human corpse. Int J Legal Med 128:229–233. https://doi.org/10.1007/s00414-013-0936-2

    Article  PubMed  Google Scholar 

  42. Frątczak-Łagiewska K, Grzywacz A, Matuszewski S (2020) Development and validation of forensically useful growth models for Central European population of Creophilus maxillosus L. (Coleoptera: Staphylinidae). Int J Legal Med 134:1531–1545. https://doi.org/10.1007/S00414-020-02275-3

    Article  PubMed  PubMed Central  Google Scholar 

  43. Richards CS, Villet MH (2009) Data quality in thermal summation development models for forensically important blowflies. Med Vet Entomol 23:269–276. https://doi.org/10.1111/j.1365-2915.2009.00819.x

    Article  PubMed  CAS  Google Scholar 

  44. Midgley JM, Villet MH (2009) Development of Thanatophilus micans (Fabricius 1794) (Coleoptera: Silphidae) at constant temperatures. Int J Legal Med 123:285–292. https://doi.org/10.1007/s00414-008-0280-0

    Article  PubMed  Google Scholar 

  45. Owings CG, Spiegelman C, Tarone AM, Tomberlin JK (2014) Developmental variation among Cochliomyia macellaria Fabricius (Diptera: Calliphoridae) populations from three ecoregions of Texas, USA. Int J Legal Med 128:709–717. https://doi.org/10.1007/s00414-014-1014-0

    Article  PubMed  Google Scholar 

  46. Thomas JK, Sanford MR, Longnecker M, Tomberlin JK (2016) Effects of temperature and tissue type on the development of Megaselia scalaris (Diptera: Phoridae). J Med Entomol 53:519–525. https://doi.org/10.1093/jme/tjw019

    Article  PubMed  Google Scholar 

  47. Zuha RM, Razak TA, Ahmad NW, Omar B (2012) Interaction effects of temperature and food on the development of forensically important fly, Megaselia scalaris (Loew) (Diptera: Phoridae). Parasitol Res 111:2179–2187. https://doi.org/10.1007/s00436-012-3070-z

    Article  PubMed  Google Scholar 

  48. Pietro CC, Di Vella G, Introna F (2001) Factors affecting decomposition and Diptera colonization. Forensic Sci Int 120:18–27. https://doi.org/10.1016/S0379-0738(01)00411-X

    Article  Google Scholar 

  49. Byrd JH, Tomberlin JK (2019) Forensic entomology: the utility of arthropods in legal investigations, 3rd edn. CRC Press, Boca Raton

  50. Ong S, Ahmad H, Tan EH (2018) Substrate moisture affects the development of Megaselia scalaris ( Diptera : Phoridae ): an implication of the growth circumstances of the fly in forensic entomology. Environ Entomol 47:1582–1585. https://doi.org/10.1093/ee/nvy127

    Article  PubMed  Google Scholar 

  51. Boonchu N, Sukontason K, Sukontason KL et al (2004) Observations on first and second-instar larvae of Megaselia scalaris (Loew) (Diptera: Phoridae). J Vector Ecol 29:79–83

    PubMed  Google Scholar 

  52. Lee YM, Disney RHL, Zuha RM (2021) Development of forensically important scuttle fly, Megaselia spiracularis Schmitz (Diptera: Phoridae) at ambient temperatures with distinguishing features of the larval instars. J Asia Pac Entomol 24:858–865. https://doi.org/10.1016/j.aspen.2021.07.013

    Article  Google Scholar 

  53. Sukontason KL, Sukontason K, Lertthamnongtham S, Boonchu N (2002) Surface ultrastructure of third-instar Megaselia scalaris (Diptera: Phoridae). Mem Inst Oswaldo Cruz 97:663–665. https://doi.org/10.1590/S0074-02762002000500014

    Article  PubMed  Google Scholar 

  54. Dian-Xing F, Guang-Chun L (2012) Morphology of immature stages of Megaselia spiracularis Schmitz (Diptera: Phoridae). Microsc Res Tech 75:1297–1303. https://doi.org/10.1002/jemt.22064

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Guangchun Liu and Dr. Dianxing Feng (Shenyang University, China) for identifying the collected specimens.

Funding

This study was supported by the National Natural Science Foundation of China (grant numbers 32070508, 31872258, and 82002007) and the Priority Academic Program Development of Jiangsu Higher Education.

Author information

Authors and Affiliations

Authors

Contributions

Investigation: Yanan Zhang and Mingqing Liao; methodology: Jiangfeng Wang and Yu Wang; formal analysis and investigation: Liangliang Li, Yu Wang, Chengtao Kang, Gengwang Hu, and Guo Yi; writing—original draft preparation: Yanan Zhang; writing—review and editing: Jiangfeng Wang and Yu Wang; funding acquisition: Jiangfeng Wang; supervision: Jiangfeng Wang. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yu Wang or Jiangfeng Wang.

Ethics declarations

Ethical approval

All animal studies were approved by the Institutional Animal Care and Use Committee (IACUC) and carried out under the policies of Soochow University.

Informed consent

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, L., Liao, M. et al. Development of Megaselia scalaris at constant temperatures and its significance in estimating the time of death. Int J Legal Med 138, 97–106 (2024). https://doi.org/10.1007/s00414-023-02993-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-023-02993-4

Keywords

Navigation