Skip to main content

Advertisement

Log in

Applications of artificial intelligence in forensic sciences: Current potential benefits, limitations and perspectives

  • Review
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

In recent years, new studies based on artificial intelligence (AI) have been conducted in the forensic field, posing new challenges and demonstrating the advantages and disadvantages of using AI methodologies to solve forensic well-known problems. Specifically, AI technology has tried to overcome the human subjective bias limitations of the traditional approach of the forensic sciences, which include sex prediction and age estimation from morphometric measurements in forensic anthropology or evaluating the third molar stage of development in forensic odontology. Likewise, AI has been studied as an assisting tool in forensic pathology for a quick and easy identification of the taxonomy of diatoms. The present systematic review follows the PRISMA 2020 statements and aims to explore an emerging topic that has been poorly analyzed in the forensic literature. Benefits, limitations, and forensic implications concerning AI are therefore highlighted, by providing an extensive critical review of its current applications on forensic sciences as well as its future directions. Results are divided into 5 subsections which included forensic anthropology, forensic odontology, forensic pathology, forensic genetics, and other forensic branches. The discussion offers a useful instrument to investigate the potential benefits of AI in the forensic fields as well as to point out the existing open questions and issues concerning its application on real-life scenarios. Procedural notes and technical aspects are also provided to the readers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

AI :

Artificial intelligence

ANN :

Artificial neural network

BCNN :

Bayesian convolutional neural network

BPNN :

Backpropagation neural network

CBCT :

Cone beam computed tomography

CNN :

Convolutional neural network

DCNN :

Deep convolutional neural network

DL :

Deep learning

DT :

Decision tree

EPG :

Electropherogram

GAN :

Generative adversarial network

GRNN :

General regression neural network

ISFC :

International Society for Forensic Genetics

k-NN :

K-nearest neighbor

ML :

Machine learning

MRI :

Magnetic resonance imaging

OPGs :

Orthopantomograms

PCR :

Polymerase chain reaction

PMCT :

Post-mortem computed tomography

PMI :

Ost-mortem interval

RF :

Random forest

STR :

Short tandem repeats

SVM :

Support vector machine

SWGDAM :

Scientific Working Group on DNA Analysis Methods

ROIs :

Region of interests

References

  1. Shapiro SC (1992) Artificial intelligence. In: Shapiro SC (ed) Encyclopedia of Artificial Intelligence, vol.1, 2nd edn. Wiley, New York, pp 89–93

    Google Scholar 

  2. Mesejo P, Martos R, Ibáñez Ó, Novo J, Ortega M (2020) A survey on artificial intelligence techniques for biomedical image analysis in skeleton-based forensic human identification. Appl Sci 10:4703. https://doi.org/10.3390/app10144703

    Article  CAS  Google Scholar 

  3. Peña-Solórzano CA, Albrecht DW, Bassed RB, Burke MD, Dimmock MR (2020) Findings from machine learning in clinical medical imaging applications - lessons for translation to the forensic setting. Forensic Sci Int 316:110538. https://doi.org/10.1016/j.forsciint.2020.110538

    Article  Google Scholar 

  4. Khanagar SB, Vishwanathaiah S, Naik S, A Al-Kheraif A, DevangDivakar D, Sarode SC, Bhandi S, Patil S (2021) Application and performance of artificial intelligence technology in forensic odontology - a systematic review. Leg Med (Tokyo) 48:101826. https://doi.org/10.1016/j.legalmed.2020.101826

    Article  Google Scholar 

  5. Taylor D, Powers D (2016) Teaching artificial intelligence to read electropherograms. Forensic Sci Int Genet 25:10–18. https://doi.org/10.1016/j.fsigen.2016.07.013

    Article  CAS  Google Scholar 

  6. Bewes J, Low A, Morphett A, Pate FD, Henneberg M (2019) Artificial intelligence for sex determination of skeletal remains: application of a deep learning artificial neural network to human skulls. J Forensic Leg Med 62:40–43. https://doi.org/10.1016/j.jflm.2019.01.004

    Article  Google Scholar 

  7. Li Y, Huang Z, Dong X, Liang W, Xue H, Zhang L, Zhang Y, Deng Z (2019) Forensic age estimation for pelvic X-ray images using deep learning. Eur Radiol 29:2322–2329. https://doi.org/10.1007/s00330-018-5791-6

    Article  Google Scholar 

  8. J.S. P.M. Mahasantipiya, U. Yeesarapat, T. Suriyadet, T.Thaiupathump (2011) Bite mark identification using neural networks: a preliminary study. Proc. Int. MultiConference Eng. Comput. Sci., Hong Kong, 2011. http://www.iaeng.org/publication/IMECS2011/IMECS2011_pp65-68.pdf. Accessed 18 October 2022

  9. Cantürk İ, Özyılmaz L (2018) A computational approach to estimate postmortem interval using opacity development of eye for human subjects. Comput Biol Med 98:93–99. https://doi.org/10.1016/j.compbiomed.2018.04.023

    Article  Google Scholar 

  10. Moretti TR, Just RS, Kehl SC, Willis LE, Buckleton JS, Bright JA, Taylor DA, Onorato AJ (2017) Internal validation of STRmix™ for the interpretation of single source and mixed DNA profiles. Forensic Sci Int Genet 29:126–144. https://doi.org/10.1016/j.fsigen.2017.04.004

    Article  CAS  Google Scholar 

  11. Spivak BL, Shepherd SM (2021) Ethics, artificial intelligence, and risk assessment. J Am Acad Psychiatry Law 49:335–337. https://doi.org/10.29158/JAAPL.210066-21

    Article  Google Scholar 

  12. Yang W, Zhou M, Zhang P, Geng G, Liu X, Zhang H (2020) Skull sex estimation based on wavelet transform and Fourier transform. Biomed Res Int 8608209. https://doi.org/10.1155/2020/8608209

  13. Yang W, Liu X, Wang K, Hu J, Geng G, Feng J (2019) Sex determination of three-dimensional skull based on improved backpropagation neural network. Comput Math Methods Med 9163547. https://doi.org/10.1155/2019/9163547

  14. Du Jardin P, Ponsaillé J, Alunni-Perret V, Quatrehomme G (2009) A comparison between neural network and other metric methods to determine sex from the upper femur in a modern French population. Forensic Sci Int 192:127.e1–6. https://doi.org/10.1016/j.forsciint.2009.07.014

    Article  Google Scholar 

  15. Oner Z, Turan MK, Oner S, Secgin Y, Sahin B (2019) Sex estimation using sternum part lenghts by means of artificial neural networks. Forensic Sci 301:6–11. https://doi.org/10.1016/j.forsciint.2019.05.011

    Article  Google Scholar 

  16. Ortega RF, Irurita J, Campo EJE, Mesejo P (2021) Analysis of the performance of machine learning and deep learning methods for sex estimation of infant individuals from the analysis of 2D images of the ilium. Int J Legal Med 135:2659–2666. https://doi.org/10.1007/s00414-021-02660-6

    Article  Google Scholar 

  17. Navega D, Coelho C, Vicente R, Ferreira MT, Wasterlain S, Cunha E (2015) AncesTrees: ancestry estimation with randomized decision trees. Int J Legal Med 129:1145–1153. https://doi.org/10.1007/s00414-014-1050-9

    Article  Google Scholar 

  18. Pengyue L, Siyuan X, Yi J, Wen Y, Xiaoning L, Guohua G, Shixiong W (2021) ANINet: a deep neural network for skull ancestry estimation. BMC Bioinformatics 22:550. https://doi.org/10.1186/s12859-021-04444-6

    Article  Google Scholar 

  19. Štern D, Payer C, Giuliani N, Urschler M (2019) Automatic age estimation and majority age classification from multi-factorial MRI data. IEEE J Biomed Health Inform 23:1392–1403. https://doi.org/10.1109/JBHI.2018.2869606

    Article  Google Scholar 

  20. Mauer MA, Well EJ, Herrmann J, Groth M, Morlock MM, Maas R, Säring D (2021) Automated age estimation of young individuals based on 3D knee MRI using deep learning. Int J Legal Med 135:649–663. https://doi.org/10.1007/s00414-020-02465-z

    Article  Google Scholar 

  21. Hagen M, Schmidt S, Schulz R, Vieth V, Ottow C, Olze A, Pfeiffer H, Schmeling A (2020) Forensic age assessment of living adolescents and young adults at the Institute of Legal Medicine, Münster, from 2009 to 2018. Int J Legal Med 134:745–751. https://doi.org/10.1007/s00414-019-02239-2

    Article  CAS  Google Scholar 

  22. Schmidt S, Schiborr M, Pfeiffer H, Schmeling A, Schulz R (2013) Age dependence of epiphyseal ossification of the distal radius in ultrasound diagnostics. Int J Legal Med 127:831–838. https://doi.org/10.1007/s00414-013-0871-2

    Article  CAS  Google Scholar 

  23. Zhang K, Dong XA, Fan F, Deng ZH (2016) Age estimation based on pelvic ossification using regression models from conventional radiography. Int J Legal Med 130:1143–1148. https://doi.org/10.1007/s00414-016-1383-7

    Article  Google Scholar 

  24. Thodberg HH, Kreiborg S, Juul A, Pedersen KD (2009) The BoneXpert method for automated determination of skeletal maturity. IEEE Trans Med Imaging 28:52–66. https://doi.org/10.1109/TMI.2008.926067

    Article  Google Scholar 

  25. Kim JR, Shim WH, Yoon HM, Hong SH, Lee JS, Cho YA, Kim S (2017) Computerized bone age estimation using deep learning based program: evaluation of the accuracy and efficiency. AJR Am J Roentgenol 209:1374–1380. https://doi.org/10.2214/AJR.17.18224

    Article  Google Scholar 

  26. Lea WW, Hong SJ, Nam HK, Kang WY, Yang ZP, Noh EJ (2022) External validation of deep learning-based bone-age software: a preliminary study with real world data. Sci Rep 12:1232. https://doi.org/10.1038/s41598-022-05282-z

    Article  CAS  Google Scholar 

  27. Alsop K, Baier W, Norman D, Burnett B, Williams MA (2021) Accurate prediction of saw blade thicknesses from false start measurements. Forensic Sci Int 318:110602. https://doi.org/10.1016/j.forsciint.2020.110602

    Article  CAS  Google Scholar 

  28. De Tobel J, Radesh P, Vandermeulen D, Thevissen PW (2017) An automated technique to stage lower third molar development on panoramic radiographs for age estimation: a pilot study. J Forensic Odontostomatol 35:42–54

    Google Scholar 

  29. Merdietio Boedi R, Banar N, De Tobel J, Bertels J, Vandermeulen D, Thevissen PW (2020) Effect of lower third molar segmentations on automated tooth development staging using a convolutional neural network. J Forensic Sci 65:481–486. https://doi.org/10.1111/1556-4029.14182

    Article  Google Scholar 

  30. Banar N, Bertels J, Laurent F, Boedi RM, De Tobel J, Thevissen P, Vandermeulen D (2020) Towards fully automated third molar development staging in panoramic radiographs. Int J Legal Med 134:1831–1841. https://doi.org/10.1007/s00414-020-02283-3

    Article  Google Scholar 

  31. Vila-Blanco N, Carreira MJ, Varas-Quintana P, Balsa-Castro C, Tomas I (2020) Deep neural networks for chronological age estimation from OPG images. IEEE Trans Med Imaging 39:2374–2384. https://doi.org/10.1109/TMI.2020.2968765

    Article  Google Scholar 

  32. De Back W, Seurig S, Wagner S, Marre B, Roeder I, Scherf N (2019) Forensic age estimation with Bayesian convolutional neural networks based on panoramic dental X-ray imaging. Conference Abstract Paper, Medical Imaging with Deep Learning - MIDL 2019 Conference London 8–10 July 2019. https://openreview.net/forum?id=SkesoBY49E Accessed 18 October 2022

  33. Patil V, Vineetha R, Vatsa S, Shetty DK, Raju A, Naik N, Malarout N (2020) Artificial neural network for gender determination using mandibular morphometric parameters: a comparative retrospective study. Cogent Eng 7:1–12. https://doi.org/10.1080/23311916.2020.1723783

    Article  Google Scholar 

  34. Esmaeilyfard R, Paknahad M, Dokohaki S (2021) Sex classification of first molar teeth in cone beam computed tomography images using data mining. Forensic Sci Int 318:110633. https://doi.org/10.1016/j.forsciint.2020.110633

    Article  Google Scholar 

  35. F. Fidya, B. Priyambadha (2018) Automation of gender determination in human canines using artificial intelligence. Dent J 50:116–120. https://doi.org/10.20473/j.djmkg.v50.i3.p116-120

  36. Guatelli-Steinberg D, Sciulli PW, Betsinger TK (2008) Dental crown size and sex hormone concentrations: another look at the development of sexual dimorphism. Am J Phys Anthropol 137:324–333. https://doi.org/10.1002/ajpa.20878

    Article  Google Scholar 

  37. Fan F, Ke W, Wu W, Tian X, Lyu T, Liu Y, Liao P, Dai X, Chen H, Deng Z (2020) Automatic human identification from panoramic dental radiographs using the convolutional neural network. Forensic Sci Int 314:110416. https://doi.org/10.1016/j.forsciint.2020.110416

    Article  Google Scholar 

  38. Lai Y, Fan F, Wu Q, Ke W, Liao P, Deng Z, Chen H, Zhang Y (2021) LCANet: learnable connected attention network for human identification using dental images. IEEE Trans Med Imaging 40:905–915. https://doi.org/10.1109/TMI.2020.3041452

    Article  Google Scholar 

  39. Italian Law 7 April 2017, n. 47 Disposizioni in materia di misure di protezione dei minori stranieri non accompagnati. – Official Gazette of the Italian Republic. Provisions regarding the protection measures for unaccompanied foreign minors https://www.gazzettaufficiale.it/eli/id/2017/04/21/17G00062/sg accessed 18 October 2022

  40. Ludes B, Coste M, North N, Doray S, Tracqui A, Kintz P (1999) Diatom analysis in victim’s tissues as an indicator of the site of drowning. Int J Legal Med 112:163–166. https://doi.org/10.1007/s004140050224

    Article  CAS  Google Scholar 

  41. Jiang L, Xiao C, Zhao J, Jiang T, Lin J, Xu Q, Liu C, Cai W (2020) Development of 18S rRNA gene arrays for forensic detection of diatoms. Forensic Sci Int 317:110482. https://doi.org/10.1016/j.forsciint.2020.110482

    Article  CAS  Google Scholar 

  42. Zhou Y, Zhang J, Huang J, Deng K, Zhang J, Qin Z, Wang Z, Zhang X, Tuo Y, Chen L, Chen Y, Huang P (2019) Digital whole-slide image analysis for automated diatom test in forensic cases of drowning using a convolutional neural network algorithm. Forensic Sci Int 302:109922. https://doi.org/10.1016/j.forsciint.2019.109922

    Article  Google Scholar 

  43. Yu W, Xue Y, Knoops R, Yu D, Balmashnova E, Kang X, Falgari P, Zheng D, Liu P, Chen H, Shi H, Liu C, Zhao J (2021) Automated diatom searching in the digital scanning electron microscopy images of drowning cases using the deep neural networks. Int J Legal Med 135:497–508. https://doi.org/10.1007/s00414-020-02392-z

    Article  Google Scholar 

  44. Deng J, Guo W, Zhao Y, Liu J, Lai R, Gu G, Zhang Y, Li Q, Liu C, Zhao J (2021) Identification of diatom taxonomy by a combination of region-based full convolutional network, online hard example mining, and shape priors of diatoms. Int J Legal Med 135:2519–2530. https://doi.org/10.1007/s00414-021-02664-2

    Article  Google Scholar 

  45. Garland J, Hu M, Kesha K, Glenn C, Morrow P, Stables S, Ondruschka B, Tse R (2021) Identifying gross post-mortem organ images using a pre-trained convolutional neural network. J Forensic Sci 66:630–635. https://doi.org/10.1111/1556-4029.14608

    Article  Google Scholar 

  46. Garland J, Hu M, Duffy M, Kesha K, Glenn C, Morrow P, Stables S, Ondruschka B, Da Broi U, Tse RD (2021) Classifying microscopic acute and old myocardial infarction using convolutional neural networks. Am J Forensic Med Pathol 42:230–234. https://doi.org/10.1097/PAF.0000000000000672

    Article  Google Scholar 

  47. Dobay A, Ford J, Decker S, Ampanozi G, Franckenberg S, Affolter R, Sieberth T, Ebert LC (2020) Potential use of deep learning techniques for postmortem imaging. Forensic Sci Med Pathol 16:671–679. https://doi.org/10.1007/s12024-020-00307-3

    Article  Google Scholar 

  48. Yasaka K, Abe O (2018) Deep learning and artificial intelligence in radiology: current applications and future directions. PLoS Med 15:e1002707. https://doi.org/10.1371/journal.pmed.1002707

    Article  Google Scholar 

  49. Garland J, Ondruschka B, Stables S, Morrow P, Kesha K, Glenn C, Tse R (2020) Identifying fatal head injuries on postmortem computed tomography using convolutional neural network/deep learning: a feasibility study. J Forensic Sci 65:2019–2022. https://doi.org/10.1111/1556-4029.14502

    Article  Google Scholar 

  50. Ebert LC, Heimer J, Schweitzer W, Sieberth T, Leipner A, Thali M, Ampanozi G (2017) Automatic detection of hemorrhagic pericardial effusion on PMCT using deep learning - a feasibility study. Forensic Sci Med Pathol 13:426–431. https://doi.org/10.1007/s12024-017-9906-1

    Article  Google Scholar 

  51. Yilmaz R, Erkaymaz O, Kara E, Ergen K (2017) Use of autopsy to determine live or stillbirth: new approaches in decision-support systems. J Forensic Sci 62:468–472. https://doi.org/10.1111/1556-4029.13277

    Article  Google Scholar 

  52. Lin H, Luo Y, Sun Q, Deng K, Chen Y, Wang Z, Huang P (2020) Determination of causes of death via spectrochemical analysis of forensic autopsies-based pulmonary edema fluid samples with deep learning algorithm. J Biophotonics 13:e201960144. https://doi.org/10.1002/jbio.201960144

    Article  CAS  Google Scholar 

  53. Zhang Y, Pechal JL, Schmidt CJ, Jordan HR, Wang WW, Benbow ME, Sze SH, Tarone AM (2019) Machine learning performance in a microbial molecular autopsy context: a cross-sectional postmortem human population study. PLoS ONE 14:e0213829. https://doi.org/10.1371/journal.pone.0213829

    Article  CAS  Google Scholar 

  54. Tirado J, Mauricio D (2021) Bruise dating using deep learning. J Forensic Sci 66:336–346. https://doi.org/10.1111/1556-4029.14578

    Article  Google Scholar 

  55. Santos K, Dias JP, Amado C (2022) A literature review of machine learning algorithms for crash injury severity prediction. J Safety Res 80:254–269. https://doi.org/10.1016/j.jsr.2021.12.007

    Article  Google Scholar 

  56. Moussa GS, Owais M, Dabbour E (2022) Variance-based global sensitivity analysis for rear-end crash investigation using deep learning. Accid Anal Prev 165:106514. https://doi.org/10.1016/j.aap.2021.106514

    Article  Google Scholar 

  57. Ghandour AJ, Hammoud H, Al-Hajj S (2020) Analyzing factors associated with fatal road crashes: a machine learning approach. Int J Environ Res Public Health 17:4111. https://doi.org/10.3390/ijerph17114111

    Article  Google Scholar 

  58. Arteaga C, Alexander P, Park WJ (2020) Injury severity on traffic crashes: a text mining with an interpretable machine-learning approach. Saf Sci 132. https://doi.org/10.1016/j.ssci.2020.104988

  59. Casali M, Malchiodi D, Spada C, Zanaboni AM, Cotroneo R, Furci D, Sommariva A, Genovese U, Blandino A (2021) A pilot study for investigating the feasibility of supervised machine learning approaches for the classification of pedestrians struck by vehicles. J Forensic Leg Med 84:102256. https://doi.org/10.1016/j.jflm.2021.102256

    Article  Google Scholar 

  60. Liu YY, Harbison S (2018) A review of bioinformatic methods for forensic DNA analyses. Forensic Sci Int Genet 33:117–128. https://doi.org/10.1016/j.fsigen.2017.12.005

    Article  CAS  Google Scholar 

  61. Benschop CCG, Hoogenboom J, Hovers P, Slagter M, Kruise D, Parag R, Steensma K, Slooten K, Nagel JHA, Dieltjes P, van Marion V, van Paassen H, de Jong J, Creeten C, Sijen T, Kneppers ALJ (2019) DNAxs/DNAStatistX: development and validation of a software suite for the data management and probabilistic interpretation of DNA profiles. Forensic Sci Int Genet 42:81–89. https://doi.org/10.1016/j.fsigen.2019.06.015

    Article  CAS  Google Scholar 

  62. Bright JA, Taylor D, McGovern C, Cooper S, Russell L, Abarno D, Buckleton J (2016) Developmental validation of STRmix™, expert software for the interpretation of forensic DNA profiles. Forensic Sci Int Genet 23:226–239. https://doi.org/10.1016/j.fsigen.2016.05.007

    Article  CAS  Google Scholar 

  63. Manabe S, Fukagawa T, Fujii K, Mizuno N, Sekiguchi K, Akane A, Tamaki K (2022) Development and validation of Kongoh ver 3. 0. 1: open-source software for DNA mixture interpretation in the GlobalFiler system based on a quantitative continuous model. Leg Med 54:101972. https://doi.org/10.1016/j.legalmed.2021.101972

    Article  CAS  Google Scholar 

  64. Perlin MW, Legler MM, Spencer CE, Smith JL, Allan WP, Belrose JL, Duceman BW (2011) Validating TrueAllele® DNA mixture interpretation. J Forensic Sci 56:1430–1447. https://doi.org/10.1111/j.1556-4029.2011.01859.x

    Article  CAS  Google Scholar 

  65. Balding DJ, Buckleton J (2009) Interpreting low template DNA profiles. Forensic Sci Int Genet 4:1–10. https://doi.org/10.1016/j.fsigen.2009.03.003

    Article  CAS  Google Scholar 

  66. Duke KR, Myers SP (2020) Systematic evaluation of STRmix™ performance on degraded DNA profile data. Forensic Sci Int Genet 44:102174. https://doi.org/10.1016/j.fsigen.2019.102174

    Article  CAS  Google Scholar 

  67. Bleka Ø, Storvik G, Gill P (2016) EuroForMix: an open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts. Forensic Sci Int Genet 21:35–44. https://doi.org/10.1016/j.fsigen.2015.11.008

    Article  CAS  Google Scholar 

  68. Holland MM, Parson W (2011) GeneMarker® HID: a reliable software tool for the analysis of forensic STR data. J Forensic Sci 56:29–35. https://doi.org/10.1111/j.1556-4029.2010.01565.x

    Article  Google Scholar 

  69. Duncan T, David P (2016) Teaching artificial intelligence to read electropherograms. Forensic Sci Int Genet 25:10–18. https://doi.org/10.1016/j.fsigen.2016.07.013

    Article  CAS  Google Scholar 

  70. Aliferi A, Ballard D, Gallidabino MD, Thurtle H, Barron L, Syndercombe Court D (2018) DNA methylation-based age prediction using massively parallel sequencing data and multiple machine learning models. Forensic Sci Int Genet 37:215–226. https://doi.org/10.1016/j.fsigen.2018.09.003

    Article  CAS  Google Scholar 

  71. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14:3156. https://doi.org/10.1186/gb-2013-14-10-r115

    Article  Google Scholar 

  72. Vidaki A, Ballard D, Aliferi A, Miller TH, Barron LP, Syndercombe Court D (2017) DNA methylation-based forensic age prediction using artificial neural networks and next generation sequencing. Forensic Sci Int Genet 28:225–236. https://doi.org/10.1016/j.fsigen.2017.02.009

    Article  CAS  Google Scholar 

  73. Specht DF (1991) A general regression neural network. IEEE Trans Neural Networks 2:568–576. https://doi.org/10.1109/72.97934

    Article  CAS  Google Scholar 

  74. Moss D, Harbison SA, Saul DJ (2003) An easily automated, closed-tube forensic DNA extraction procedure using a thermostable proteinase. Int J Legal Med 117:340–349. https://doi.org/10.1007/s00414-003-0400-9

    Article  CAS  Google Scholar 

  75. Mygind T, Østergaard L, Birkelund S, Lindholt JS, Christiansen G (2003) Evaluation of five DNA extraction methods for purification of DNA from atherosclerotic tissue and estimation of prevalence of Chlamydia pneumoniae in tissue from a Danish population undergoing vascular repair. BMC Microbiol 3:19. https://doi.org/10.1186/1471-2180-3-19

    Article  Google Scholar 

  76. Silva JT, Wong CY, Dileanis JL, Dunn CM, Impraim CC (2003) Automated DNA extraction from frozen blood using the Abbott M1000 for HLA-DRB sequencing-based typing. Hum Immunol 64:95. https://doi.org/10.1016/J.HUMIMM.2003.08.175

    Article  CAS  Google Scholar 

  77. Greenspoon SA, Jeffrey DB, Sykes K, Ballard EJ, Edler SS, Baisden M, Convington BL (2004) Application of the BioMek® 2000 laboratory automation workstation and the DNA IQ™ system to the extraction of forensic casework samples. J Forensic Sci 49:29–39. https://doi.org/10.1520/JFS2003179

    Article  Google Scholar 

  78. Anslinger K, Bayer B, Rolf B, Keil W, Eisenmenger W (2005) Application of the BioRobot EZ1 in a forensic laboratory. Leg Med 7:164–168. https://doi.org/10.1016/j.legalmed.2005.01.002

    Article  CAS  Google Scholar 

  79. Scientific Working Group on DNA Analysis Methods (SWGDAM) (2015) Guidelines for the Validation of Probabilistic Genotyping Systems https://www.swgdam.org/_files/ugd/4344b0_22776006b67c4a32a5ffc04fe3b56515.pdf Accessed 18 October 2022

  80. Coble MD, Buckleton J, Butler JM, Egeland T, Fimmers R, Gill P, Gusmão L, Guttman B, Krawczak M, Morling N, Parson W, Pinto N, Schneider PM, Sherry ST, Willuweit S, Prinz M (2016) DNA Commission of the International Society for Forensic Genetics: recommendations on the validation of software programs performing biostatistical calculations for forensic genetics applications. Forensic Sci Int Genet 25:191–197. https://doi.org/10.1016/j.fsigen.2016.09.002

    Article  CAS  Google Scholar 

  81. Forensic Science Regulator (2020) Software validation for DNA mixture interpretation, FSR-G-223 Issue 2 https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/917784/G223_Mix_software_valid_Issue2_accessV3.pdf. Accessed 18 October 2022

  82. Haned H, Gill P, Lohmueller K, Inman K, Rudin N (2016) Validation of probabilistic genotyping software for use in forensic DNA casework: definitions and illustrations. Sci Justice 56:104–108. https://doi.org/10.1016/j.scijus.2015.11.007

    Article  Google Scholar 

  83. Ince DC, Hatton L, Graham-Cumming J (2012) The case for open computer programs. Nature 482:485–488. https://doi.org/10.1038/nature10836

    Article  CAS  Google Scholar 

  84. IEEE Standard for System and Software Verification and Validation (2012) IEEE Std 1012–2012 (Revision of IEEE Std 1012–2004) 1–223. https://doi.org/10.1109/IEEESTD.2012.6204026.

  85. IEEE Standard for Software and System Test Documentation (2008) IEEE Std 829–2008 1–150, doi: https://doi.org/10.1109/IEEESTD.2008.4578383

  86. Coble MD, Bright JA (2019) Probabilistic genotyping software: an overview. Forensic Sci Int Genet 38:219–224. https://doi.org/10.1016/j.fsigen.2018.11.009

    Article  CAS  Google Scholar 

  87. Hassan M, Wang Y, Wang D, Li D, Liang Y, Zhou Y, Xu D (2021) Deep learning analysis and age prediction from shoeprints. Forensic Sci Int 327:110987. https://doi.org/10.1016/j.forsciint.2021.110987

    Article  Google Scholar 

  88. Sáez Trigueros D, Meng L, Hartnett M (2021) Generating photo-realistic training data to improve face recognition accuracy. Neural Netw 134:86–94. https://doi.org/10.1016/j.neunet.2020.11.008

    Article  Google Scholar 

  89. Bedeli M, Geradts Z, van Eijk E (2018) Clothing identification via deep learning: forensic applications. Forensic Sci Res 3:219–229. https://doi.org/10.1080/20961790.2018.1526251

    Article  Google Scholar 

  90. Apasrawirote D, Boonchai P, Muneesawang P, Nakhonkam W, Bunchu N (2022) Assessment of deep convolutional neural network models for species identification of forensically-important fly maggots based on images of posterior spiracles. Sci Rep 12:4753. https://doi.org/10.1038/s41598-022-08823-8

    Article  CAS  Google Scholar 

  91. Oura P, Junno A, Junno JA (2021) Deep learning in forensic shotgun pattern interpretation - a proof-of-concept study. Leg Med (Tokyo) 53:101960. https://doi.org/10.1016/j.legalmed.2021.101960

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Galante.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galante, N., Cotroneo, R., Furci, D. et al. Applications of artificial intelligence in forensic sciences: Current potential benefits, limitations and perspectives. Int J Legal Med 137, 445–458 (2023). https://doi.org/10.1007/s00414-022-02928-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-022-02928-5

Keywords

Navigation