Skip to main content

Advertisement

Log in

Comparison of DNA preservation between adult and non-adult ancient skeletons

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Studies evaluating DNA preservation in non-adults, or comparing preservation in adults and non-adults, are very rare. This study compares the preservation of DNA in the skeletal remains of adults and non-adults. It compares the quality and quantity of DNA recovered from different skeletal elements of adults and non-adults, and from non-adults of different age classes. In addition, the preservation of DNA in males and females is compared. Bone DNA preservation was estimated by measuring nuclear DNA concentration and its degradation, and through STR typing success. The study analyzed 29 adult skeletons and 23 non-adult skeletons from the Ljubljana–Polje archeological site, dating from the seventeenth to nineteenth century, and up to four skeletal elements (petrous bone, femur, calcaneus, and talus) were included. After full demineralization extraction, the PowerQuant System and the PowerPlex ESI 17 Fast System (Promega) were used for qPCR and STR typing, respectively. The results showed that, among the four bone types analyzed, only the petrous bone proved to be a suitable source of DNA for STR typing of non-adult skeletal remains, and DNA yield is even higher than in the adult petrous bone, which can be attributed to the higher DNA degradation observed in the adult petrous bone. In adult skeletons, petrous bones and tali produced high STR amplification success and low DNA yield was observed in adult femurs. The results of this study are applicable for the sampling strategy in routine forensic genetics cases for solving identification cases, including badly preserved non-adult and also adult skeletons.

Highlights

• Comparison between adult and non-adult skeletons is poorly researched.

• Petrous bones, tali, calcanei, and femurs were analyzed.

• Petrous bones produced higher DNA yield in non-adult than adult skeletons.

• DNA degradation was higher in adult than non-adult petrous bones.

• Petrous bones are the most suitable skeletal element for sampling aged non-adult skeletons.

• In adult skeletons alongside the petrous bone the talus also produced high-quality STR profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The authors declare that all the data are available.

References

  1. Andronowski JM, Mundorff AZ, Pratt IV, Davoren JM, Cooper DML (2017) Evaluating differential nuclear DNA yield rates and osteocyte numbers among human bone tissue types: a synchrotron radiation micro-CT approach. Forensic Sci Int Genet 28:211–218

    Article  PubMed  CAS  Google Scholar 

  2. Antinick TC, Foran DR (2019) Intra- and inter-element variability in mitochondrial and nuclear DNA from fresh and environmentally exposed skeletal remains. J Forensic Sci 64:88–97

    Article  PubMed  CAS  Google Scholar 

  3. Bello S (2005) The reciprocal effects of taphonomy, funerary practices and anatomical features on the state of preservation of human remains. Brit Archaeol Rep In 1383:1–10

    Google Scholar 

  4. Bello S, Andrews P (2006) The intrinsic pattern of preservation of human skeletons and its influence on the interpretation of funerary behaviours. In: Gowland R, Knüsel C (eds) Social archaeology of funerary remains. Oxbow Books Oxford, pp 1–13

    Google Scholar 

  5. Bello SM, Thomann A, Signoli M et al (2006) Age and sex bias in the reconstruction of past population structures. Am J Phys Anthropol 129:24–38

    Article  PubMed  Google Scholar 

  6. Broman GE, Trotter M, Peterson RR (1958) The density of selected bones of the human skeleton. Am J Phys Anthropol 16:197–211

    Article  Google Scholar 

  7. Buckberry J (2000) Missing, presumed buried? Bone diagenesis and the under-representation of Anglo-Saxon children. Assemblage 5. Available at http://archaeologydataservice.ac.uk/archives/view/assemblage/html/5/buckberr.html

  8. Buckberry J (2018) Techniques for identifying the age and sex of children at death. In: Crawford S, Hadley D, Shepherds G (eds) The Oxford Handbook of the Archaeology of Childhood Oxford Handbooks Collection. Oxford University Press, Oxford, p 55–70. http://archaeologydataservice.ac.uk/archives/view/assemblage/html/5/buckberr.html

  9. Campos PF, Craig OE, Turner-Walker G, Peacock E, Willerslev E, Gilbert MTP (2012) DNA in ancient bone—where is it located and how should we extract Ann. Anat 194:7–16

    CAS  Google Scholar 

  10. Carpenter J, Bithell J (2000) Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians. Statist Med 19:1141–1164

    Article  CAS  Google Scholar 

  11. Chaplin RE. The study of animal bones from archaeological sites. Seminar Press Ltd., 1971, London, New York.

  12. Crawford S, Lewis C (2009) Childhood studies and the society for the study of childhood in the past. Childhood in the Past 1:5–16. https://doi.org/10.1179/cip.2009.1.1.5

  13. Čakar J, Džehverović M, Pilav A (2020) DNA analysis of thirty-eight years old stillborn’s skeletal remains in case of disputed maternity. Forensic Sci Int Genet 47:102294

    Article  PubMed  CAS  Google Scholar 

  14. DiCiccio TJ, Efron B (1996) Bootstrap Confidence Intervals. Stat Sci 3:189–228

    Google Scholar 

  15. Djurić M, Djukić K, Milovanović P et al (2011) Representing children in excavated cemeteries: the intrinsic preservation factors. Antiquity 85:250–262

    Article  Google Scholar 

  16. Edson SM, Ross JP, Coble MD et al (2004) Naming the dead—confronting the realities of rapid identification of degraded skeletal remains. Forensic Sci Review 16:63

    CAS  Google Scholar 

  17. Emmons AL, Davoren J, DeBruyn JM, Mundorff AZ (2020) Inter and intra-individual variation in skeletal DNA preservation in buried remains. Forensic Sci Int Genet 44:102193

    Article  PubMed  CAS  Google Scholar 

  18. Ewing MM, Thompson JM, McLaren RS, Purpero VM, Thomas KJ, Dobrowski PA et al (2016) Human DNA quantification and sample assessment: developmental validation of the PowerQuant system. Forensic Sci Int Genet 23:166–177

    Article  PubMed  CAS  Google Scholar 

  19. Gabrovšek, M. (2017). 120-letnica posvetitve cerkve Device Marije v Polju. Župnija Ljubljana Polje

  20. Gamba C, Jones ER, Teasdale MD et al (2014) Genome flux and stasis in a five millennium transect of European prehistory. Nat Commun 5:5257. https://doi.org/10.1038/ncomms6257

    Article  PubMed  CAS  Google Scholar 

  21. Gardner MJ, Altman DG (1986) Confidence intervals rather than P values: estimation rather than hypothesis testing. Br Med J 292:746–750

    Article  CAS  Google Scholar 

  22. Geršak ŽM, Zupanič Pajnič I, Črešnar M, Zupanc T (2019) Determination of DNA yield rates in six different skeletal elements in ancient bones. Forensic Sci Int Genet Suppl Ser 7:120–122

    Article  Google Scholar 

  23. Gonzalez A, Cannet C, Zvénigorosky V, Geraut A, Koch G et al (2020) The petrous bone: ideal substrate in legal medicine? Forensic Sci Int Genet. https://doi.org/10.1016/j.fsigen.2020.102305

    Article  PubMed  Google Scholar 

  24. Gotherstrom A, Collins MJ, Angerbjorn A, Liden K (2002) Bone preservation and DNA amplification. Archaeometry 3:395–404

    Article  Google Scholar 

  25. Guy H, Masset C, Baud CA (1997) Infant taphonomy. Int J Osteoarchaeol 7:221–229. https://doi.org/10.1002/(SICI)1099-1212(199705)7:3%3c221::AID-OA338%3e3.0.CO;2-Z

    Article  Google Scholar 

  26. Hansen HB, Damgaard PB, Margaryan A, Stenderup J, Lynneruo N, Willerslev E et al (2017) Comparing ancient DNA preservation in petrous bone and tooth cementum. PLoS ONE 12:e0170940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hedges REM, Millard AR (1995) Bones and groundwater: towards the modelling of diagenetic processes. J Archaeol Sci. 22:155–164. https://doi.org/10.1006/jasc.1995.0017

    Article  Google Scholar 

  28. Henderson J (1987) Factors determining the state of preservation of human remains. In: Andy B, N. GA, Janaway RC (eds) Death, decay, and reconstruction: approaches to archaeology and forensic science. Manchester University Press, Manchester, UK, p. 43–54.

  29. Hines DZC, Vennemeyer M, Amory S, Huel R, Hanson I, Katzmarzyk C, et al. (2014) Prioritizing sampling of bone and teeth for DNA analysis in commingled cases, in: B.J. Adams, J.E. Byrd (Eds.), Commingled Human Remains: Methods in Recovery, Analysis, and Identification, Elsevier Inc. 275–305.

  30. Hoppa R D, Vaupel J W. The Rostock Manifesto for paleodemography: the way from stage to age. Cambridge Studies in Biological and Evolutionary Anthropology, 2002:1–8.

  31. Inkret J, Podovšovnik E, Zupanc T, Haring G, Zupanič PI (2021) Intra-bone nuclear DNA variability in Second World War metatarsal and metacarpal bones. Int J Legal Med. https://doi.org/10.1007/s00414-021-02528-9

    Article  PubMed  Google Scholar 

  32. Işcan MY Steyn MM. (2013). The human skeleton in forensic medicine (3rd ed.). Charles C Thomas, p.182. https://doi.org/10.1002/ajpa.22754

  33. Just RS, Loreille OM, Molto JE, Merriwether DA, Woodward SR, Matheson C et al (2011) Titanic’s unknown child: the critical role of the mitochondrial DNA coding region in a re-identification effort. Forensic Sci Int Genet 5:231–235

    Article  PubMed  CAS  Google Scholar 

  34. Kamp KA (2001) Where have all the children gone?: the archaeology of childhood. J Archaeol Method Th 8:1–34

    Article  Google Scholar 

  35. Kaye TG, Gaugler G, Sawlowicz Z (2008) Dinosaurian soft tissues interpreted as bacterial biofilms. PLoS ONE 3:e2808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hermans, R. (2004). External Ear Imaging. In: Lemmerling, M., Kollias, S.S. (eds) Radiology of the Petrous Bone. Medical Radiology. Springer Berlin Heidelberg. 15 - 30

  37. Kralick AE, Zemel BS (2020) Evolutionary perspectives on the developing skeleton and implications for lifelong health. Front Endocrinol 11:99. https://doi.org/10.3389/fendo.2020.00099

    Article  Google Scholar 

  38. Kulstein G, Hadrys T, Wiegand P (2018) As solid as a rock-comparison of CE- and MPS-based analyses of the petrosal bone as a source of DNA for forensic identification of challenging cranial bones. Int J Legal Med 132:13–24

    Article  PubMed  Google Scholar 

  39. Larsen CS (2002) Bioarchaeology: the lives and lifestyles of past people. J Archaeol Res 10:119–166. https://doi.org/10.1023/A:1015267705803

    Article  Google Scholar 

  40. Lewis, M. (2006). The bioarchaeology of children. In The Bioarchaeology of Children: perspectives from biological and forensic anthropology (Cambridge Studies in Biological and Evolutionary Anthropology, p. 1–19). Cambridge: Cambridge University Press. doi:https://doi.org/10.1017/CBO9780511542473.001

  41. Lewis M (2018) Chapter 10—juvenile arthropathies, circulatory, and endocrine disorders. In: Lewis MBT-P of C (ed). Academic Press, San Diego, p. 245–265.

  42. Lillehammer G (2010) Archaeology of children Complutum 21:15–45

    Google Scholar 

  43. Manifold BM (2010) The representation of non-adult skeletal elements recovered from British archaeological sites. Childhood in the Past 3:43–62. https://doi.org/10.1179/cip.2010.3.1.43

    Article  Google Scholar 

  44. Manifold BM (2015) Skeletal preservation of children’s remains in the archaeological record. HOMO 66:520–548. https://doi.org/10.1016/j.jchb.2015.04.003

    Article  PubMed  CAS  Google Scholar 

  45. Mansour, S., Magnan, J., Haidar, H., Nicolas, K., Louryan, S. (2013). The temporal bone. In: comprehensive and clinical anatomy of the middle ear. Springer, Berlin, Heidelberg, 1–17. https://doi.org/10.1007/978-3-642-36967-4_1

  46. Markelj Kemperl M, Kokalj D, Smerke M, Jurovic M. (1999). Polje, kdo bo tebe ljubil --- : teh nasih petsto let. Druzina.

  47. Maynard LM, Guo SS, Chumlea WC et al (1998) Total-body and regional bone mineral content and areal bone mineral density in children aged 8–18 y: the Fels Longitudinal Study. Am J Clin Nutr 68:1111–1117. https://doi.org/10.1093/ajcn/68.5.1111

    Article  PubMed  CAS  Google Scholar 

  48. Mays S (1992) Taphonomic factors in a human skeletal assemblage. Environ Archaeol 9:54–58

    Google Scholar 

  49. Mays S, Elders J, Humphrey L, et al (2013) Science and the dead: a guideline for the destructive sampling of archaeological human remains for scientific analysis. English Heritage Publishing with the Advisory Panel on the Archaology of Burial in England, London, p. 3–5.

  50. Miloš A, Selmanović A, Smajlović L et al (2007) Success rates of nuclear short tandem repeat typing from different skeletal elements. Croatian Med J 48:486–493

    Google Scholar 

  51. Misner LM, Halvorson AC, Dreier JL, Ubelaker DH, Foran DR (2009) The correlation between skeletal weathering and DNA quality and quantity. J Forensic Sci 54:822–828

    Article  PubMed  CAS  Google Scholar 

  52. Morild I, Hamre SS, Huel R, Parsons TJ (2015) Identification of missing Norwegian World War II soldiers, in Karelia Russia. J Forensic Sci 60:1104–1110

    Article  PubMed  CAS  Google Scholar 

  53. Morton RJ, Lord WD (2006) Taphonomy of child-sized remains: a study of scattering and scavenging in Virginia, USA. J Forensic Sci 51:475–479. https://doi.org/10.1111/j.1556-4029.2006.00134.x

    Article  PubMed  Google Scholar 

  54. Mundorff AZ, Bartelink EJ, Mar-Cash E (2009) DNA preservation in skeletal elements from the World Trade Center Disaster: recommendations for mass fatality management. J Forensic Sci 54:739–745. https://doi.org/10.1111/j.1556-4029.2009.01045.x

    Article  PubMed  CAS  Google Scholar 

  55. Mundorff A, Davoren JM (2014) Examination of DNA yield rates for different skeletal elements at increasing post mortem intervals. Forensic Sci Int Genet 8:55–63. https://doi.org/10.1016/j.fsigen.2013.08.001

    Article  PubMed  CAS  Google Scholar 

  56. Nawrocki SP (1995) Taphonomic processes in historical cemeteries. In: Grauer AL (ed) Bodies of evidence: reconstructing history through skeletal analysis. Wiley-Liss, New York, pp 49–66

    Google Scholar 

  57. Nielsen-Marsh C, Gernaey A, Turner-Walker G et al (2000) The chemical degradation of bones. In: Cox M, Mays S (eds) Human Osteology in Archaeology and Forensic Science. Greenwich Medical Media, London, pp 439–451

    Google Scholar 

  58. Obal M, Zupanič Pajnič I, GornjakPogorelc B, Zupanc T (2019) Different skeletal elements as a source of DNA for genetic identification of Second World War victims. Forensic Sci Int Genet Suppl Ser 7:27–29

    Article  Google Scholar 

  59. Ordóñez, A. C., Rosa, M. M. A. de la, Lorenzo, R. I. F., Pérez, G. R., Reimers, C. E. G., & Brito, J. J. P. (2015). Use of molecular genetic procedures for sex determination in “Guanches” children’s remains. In M. Sánchez Romero, E. Alarcón García, & G. Aranda Jiménez (Eds.), Children, spaces and identity (p. 218–229). Oxbow Books.

  60. Ossowski A, Kuś M, Brzeziński P, Prüffer J, Piątek J, Zielińska G (2013) Example of human individual identification from World War II gravesite. Forensic Sci Int 233:179–192

    Article  PubMed  Google Scholar 

  61. Pääbo S, Poinar H, Serre D, Jaenicke-Després V, Hebler J, Rohland N et al (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679

    Article  PubMed  CAS  Google Scholar 

  62. Parker C, Rohrlach AB, Friederich S et al (2020) A systematic investigation of human DNA preservation in medieval skeletons. Sci Rep 10:18225. https://doi.org/10.1038/s41598-020-75163-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Parsons TJ, Huel RML, Bajunović Z, Rizvić A (2019) Large scale DNA identification: the ICMP experience. Forensic Sci Int Genet 38:236–244

    Article  PubMed  CAS  Google Scholar 

  64. Parson W, Gusmão L, Hares DR, Irwin JA, Mayr WR, Morling N et al (2014) DNA Commission of the International Society for Forensic Genetics: Revised and extended guidelines for mitochondrial DNA typing. Forensic Sci Int Genet 13:134–142

    Article  PubMed  CAS  Google Scholar 

  65. Pilli E, Vai S, Caruso MG, D’Errico G, Berti A, Caramelli D (2018) Neither femur nor tooth: petrous bone for identifying archaeological bone samples via forensic approach. Forensic Sci Int 283:144–149. https://doi.org/10.1016/j.forsciint.2017.12.023

    Article  PubMed  CAS  Google Scholar 

  66. Pinhasi R, Fernandes D, Sirak K, Novak M, Connell S, Alpaslan-Roodenberg S et al (2015) Optimal ancient DNA yields from the inner ear part of the human petrous bone. PLoS ONE 10:e0129102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Prinz M, Carracedo A, Mayr WR et al (2007) DNA Commission of the International Society for Forensic Genetics (ISFG): Recommendations regarding the role of forensic genetics for disaster victim identification (DVI). Forensic Sci Int Genet 1:3–12. https://doi.org/10.1016/j.fsigen.2006.10.003

    Article  PubMed  CAS  Google Scholar 

  68. Promega Corporation. PowerPlex ESI 17 Fast System for use on the Applied Biosystems Genetic Analyzers. 2017, Madison, WI.

  69. Promega Corporation (2020) PowerQuant system technical manual. Madison

  70. Qiagen Companies. EZ1&2 DNA Investigator Handbook. 2021, Hilden.

  71. Rauch F, Schoenau E (2001) The developing bone: slave or master of its cells and molecules? Pediat Res 2001(50):309–314

    Article  Google Scholar 

  72. Robling AG, Castillo AB, Turner CH (2006) Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng 8:455–498. https://doi.org/10.1146/annurev.bioeng.8.061505.095721

    Article  PubMed  CAS  Google Scholar 

  73. Rohland N, Hofreiter M (2007) Ancient DNA extraction from bones and teeth. Nat Protoc 2:1756

    Article  PubMed  CAS  Google Scholar 

  74. Rothe J, Melisch C, Powers N, Geppert M, Zander J, Purps J et al (2015) Genetic research at a fivefold children’s burial from medieval Berlin. Forensic Sci Int Genet 15:90–97

    Article  PubMed  Google Scholar 

  75. Saunders SR, Barrans L. (1999) What can be done about the infant category in skeletal samples? Camb S Bio Evol Anthr. 183–209.

  76. Scheuer L, Black SM (2000) Developmental juvenile osteology. Academic, London, p IX–X. https://archive.org/details/developmentaljuv0000sche

  77. Shea JJ (2006) Child’s play: reflections on the invisibility of children in the Paleolithic record. Evol Anthropol Issues, News, and Reviews: Issues, News, and Reviews 15:212–216

    Article  Google Scholar 

  78. Sirak KA, Fernandes DM, Cheronet O et al (2017) A minimally-invasive method for sampling human petrous bones from the cranial base for ancient DNA analysis. Biotechniques 62:283–289. https://doi.org/10.2144/000114558

    Article  PubMed  CAS  Google Scholar 

  79. Siriboonpiputtana T, Rinthachai T, Shotivaranon J et al (2018) Forensic genetic analysis of bone remain samples. Forensic Sci Int 284:167–175. https://doi.org/10.1016/j.forsciint.2017.12.045

    Article  PubMed  CAS  Google Scholar 

  80. Stojanowski CM, Seidemann RM, Doran GH (2002) Differential skeletal preservation at Windover Pond: causes and consequences. Am J Phys Anthropol The Official Publication of the American Association of Physical Anthropologists 119:15–26

    Google Scholar 

  81. Tierney SN, Bird JM (2015) Molecular sex identification of juvenile skeletal remains from an Irish medieval population using ancient DNA analysis. J Archaeol Sci 62:27–38. https://doi.org/10.1016/j.jas.2015.06.016

    Article  CAS  Google Scholar 

  82. von Endt DW, Ortner DJ (1984) Experimental effects of bone size and temperature on bone diagenesis. J Archaeol Sci 11:247–253. https://doi.org/10.1016/0305-4403(84)90005-0

    Article  Google Scholar 

  83. Vrhovec, I. (1903). Zgodovina šentpeterske fare v Ljubljani. Slovenska matica.

  84. Waldron T (1987) The relative survival of the human skeleton: implications for palaeopathology. In: Boddington A, Garland AN, Janaway RC (eds) Death, Decay, and Reconstruction: Approaches to Archaeology and Forensic Science. Manchester University Press, Manchester, pp 55–64

    Google Scholar 

  85. Walker PL, Johnson JR, Lambert PM (1988) Age and sex biases in the preservation of human skeletal remains. Am J Phys Anthropol 1988(76):183–188

    Article  Google Scholar 

  86. Watherston J, McNevin D, Gahan ME, Bruce D, Ward J (2018) Current and emerging tools for the recovery of genetic information from post mortem samples: new directions for disaster victim identification. Forensic Sci Int Genet 37:270–282

    Article  PubMed  CAS  Google Scholar 

  87. Weiss KM, Wobst HM (1973) Demographic models for anthropology. Memoirs of the Society for American Archaeology i–186. https://openlibrary.org/books/OL4955237M/Demographic_models_for_anthropology

  88. Wells JCK (2007) Sexual dimorphism of body composition. Best Pract ResCl En 21:415–430. https://doi.org/10.1016/j.beem.2007.04.007

    Article  Google Scholar 

  89. Willey P, Galloway A, Snyder L (1997) Bone mineral density and survival of elements and element portions in the bones of the Crow Creek massacre victims. Am J Phys Anthropol: The Official Publication of the American Association of Physical Anthropologists 104:513–528

    Article  CAS  Google Scholar 

  90. Zapata J, Pérez-Sirvent C, Martínez-Sánchez MJ, Tovar P (2006) Diagenesis, not biogenesis: two late Roman skeletal examples. Sci Total Environ 369:357–368. https://doi.org/10.1016/j.scitotenv.2006.05.021

    Article  PubMed  CAS  Google Scholar 

  91. Zupanc T, Zupanič Pajnič I, Podovšovnik E, Obal M (2021) High DNA yield from metatarsal and metacarpal bones from Slovenian Second World War skeletal remains. Forensic Sci Int Genet. 102426. https://doi.org/10.1016/j.fsigen.2020.102426

  92. Zupanič Pajnič I (2016) Extraction of DNA from human skeletal material. In: Goodwin W (ed), Forensic DNA typing protocols, methods in molecular biology, vol 1420. Springer Science&Business Media, LLC, New York. pp 89–108. https://doi.org/10.1007/978-1-4939-3597-0_7

  93. Zupanič PI (2020) Genetic analysis of skeletal remains of war victims. Rom J Leg Med 28:40–49

    Article  Google Scholar 

  94. Zupanič Pajnič I (2020b) Analyses of Second World War skeletal remains using a forensic approach, in: Shrivastava P (Ed), et al. Forensic DNA typing : principles, applications and advancements. 153–179, Springer, Singapore. https://link.springer.com/chapter/ doi: https://doi.org/10.1007/978-981-15-6655-4_8.

  95. Zupanič PI (2021) Identification of a Slovenian prewar elite couple killed in the Second World War. Forensic Sci Int 327:110994

    Article  Google Scholar 

  96. ZupaničPajnič I, Inkret J, Zupanc T, Podovšovnik E (2021) Comparison of nuclear DNA yield and STR typing success in Second World War petrous bones and metacarpals III. Forensic Sci Int Genet 55:102578

    Article  CAS  Google Scholar 

  97. ZupaničPajnič I, Gornjak-Pogorelc B, Balažic J (2010) Molecular genetic identification of skeletal remains from the Second world war Konfin I mass grave in Slovenia. Int J Legal Med 124:307–317

    Article  Google Scholar 

  98. ZupaničPajnič I, Obal M, Zupanc T (2020) Identifying victims of the largest Second World War family massacre in Slovenia. Forensic Sci Int 306:110056

    Article  CAS  Google Scholar 

  99. ZupaničPajnič I, Petaros A, Balažic J, Geršak K (2016) Searching for the mother missed since the Second World War. J Forensic Leg Med 44:138–142

    Article  Google Scholar 

  100. ZupaničPajnič I, Zupanc T, Balažic J, Geršak ŽM, Stojković O, Skadrić I et al (2017) Prediction of autosomal STR typing success in ancient and Second World War bone samples. Forensic Sci Int Genet 27:17–26

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Slovenian Research Agency (the project “Inferring ancestry from DNA for human identification” J3-3080). The authors would like to thank The Ljubljana Museum and Galleries (MGML) and the responsible curator Martin Horvat for including the archeological human remains from the museum into our study.

Funding

Javna agencija za raziskovalno dejavnost Republike Slovenije: project J3-3080.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Zupanič Pajnič.

Ethics declarations

Research involving human participants and/or animals

Research involvs ancient skeletons and genetic profiles of persons included in elimination database and from them informed consents were obtained and submitted to the Medical Ethics Committee of the Republic of Slovenia. After submition, the Medical Ethics Committee of the Republic of Slovenia approved the research (number of approval is 0120–526/2021/7.

Informed consent

This research project was approved by the Medical Ethics Committee of the Republic of Slovenia (0120–526/2021/7), and informed consents of persons included in elimination database were submitted to the Medical Ethics Committee of the Republic of Slovenia.

Ethics approval

This research project was approved by the Medical Ethics Committee of the Republic of Slovenia (0120–526/2021/7).

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šuligoj, A., Mesesnel, S., Leskovar, T. et al. Comparison of DNA preservation between adult and non-adult ancient skeletons. Int J Legal Med 136, 1521–1539 (2022). https://doi.org/10.1007/s00414-022-02881-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-022-02881-3

Keywords

Navigation