Skip to main content
Log in

Age estimation in infant skeletal remains by measurements of the pars lateralis

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The objectives of this work were to validate two published methods for subadult age estimation based on measurements of the pars lateralis, and to develop a new method based on a wider set of measurements using the Granada Osteological Collection. The pars lateralis of 127 individuals from 6 months prenatal to 4 years of age were measured, taking 6 measurements of the body, the anterior synchondrosis and the condyle. Length and width were used to validate the published methods. Regression functions using age as the independent variable were calculated using each of the six measurements taken, and functions for age estimation were obtained through classical calibration. Functions for calculation of the 95% confidence interval of the estimates were obtained through linear regression using the estimation errors. In the validation of the previous methods, one method showed a linear tendency of the differences, which can be attributed to a circularity in reasoning in the original work. In the other method, a tendency towards overestimation was found, which can be attributed to the limitations of the method itself. The new functions have a consistency rate of 92.2% to 97.1%; the functions derived from all measurements are useful from 6 months prenatal to 2 years of age. Moreover, the functions obtained are applicable to incomplete pars lateralis, allowing for age estimation in a wide set of contexts and providing straightforward age estimates with their respective margin of error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The dataset generated and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. AlQahtani SJ, Hector MP, Liversidge HM (2010) Brief communication: the London atlas of human tooth development and eruption. Am J Phys Anthropol 142:481–490. https://doi.org/10.1002/ajpa.21258

    Article  CAS  PubMed  Google Scholar 

  2. García-Mancuso R (2014) Congruencia entre edad esquelética y desarrollo dentario en una muestra osteológica con edad cronológica documentada. Rev Argentina Antropol Biológica 16:103–109

    Google Scholar 

  3. Irurita Olivares J, Alemán Aguilera I, Viciano Badal J, De Luca S, Botella López MC (2014) Evaluation of the maximum length of deciduous teeth for estimation of the age of infants and young children: proposal of new regression formulas. Int J Legal Med 128:345–352. https://doi.org/10.1007/s00414-013-0903-y

    Article  PubMed  Google Scholar 

  4. Cardoso HFV, Gomes J, Campanacho V, Marinho L (2013) Age estimation of immature human skeletal remains using the post-natal development of the occipital bone. Int J Legal Med 127:997–1004. https://doi.org/10.1007/s00414-013-0818-7

    Article  CAS  PubMed  Google Scholar 

  5. Irurita Olivares J, Alemán Aguilera I (2017) Proposal of new regression formulae for the estimation of age in infant skeletal remains from the metric study of the pars basilaris. Int J Legal Med 131:781–788. https://doi.org/10.1007/s00414-016-1478-1

    Article  PubMed  Google Scholar 

  6. Smith DEM, Humphrey LT, Cardoso HFV (2021) Age estimation of immature human skeletal remains from mandibular and cranial bone dimensions in the postnatal period. Forensic Sci Int 327:110943. https://doi.org/10.1016/j.forsciint.2021.110943

    Article  CAS  PubMed  Google Scholar 

  7. Cardoso HFV, Spake L, Humphrey LT (2017) Age estimation of immature human skeletal remains from the dimensions of the girdle bones in the postnatal period. Am J Phys Anthropol 163:772–783. https://doi.org/10.1002/ajpa.23248

    Article  PubMed  Google Scholar 

  8. Cardoso HFV, Vandergugten JM, Humphrey LT (2017) Age estimation of immature human skeletal remains from the metaphyseal and epiphyseal widths of the long bones in the post-natal period. Am J Phys Anthropol 162:19–35. https://doi.org/10.1002/ajpa.23081

    Article  PubMed  Google Scholar 

  9. Picó Pérez C, Irurita Olivares J, Alemán Aguilera I (2017) Validation methods of Fazekas and Kósa and Molleson and Cox for age estimation of the ilium in Western Mediterranean non-adult population: proposal of new regression formulas. Int J Legal Med 131:789–795. https://doi.org/10.1007/s00414-016-1475-4

    Article  Google Scholar 

  10. Redfield A (1970) A new aid to aging immature skeletons: development of the occipital bone. Am J Phys Anthropol 33:207–220. https://doi.org/10.1002/ajpa.1330330206

    Article  CAS  PubMed  Google Scholar 

  11. Fazekas IG, Kósa F (1978) Forensic fetal osteology. Akadémiai Kiadó, Budapest

  12. Scheuer L, MacLaughlin-Black S (1994) Age estimation from the pars basilaris of the fetal and juvenile occipital bone. Int J Osteoarchaeol 4:377–380. https://doi.org/10.1002/oa.1390040412

    Article  Google Scholar 

  13. Thornton R, Edkins AL, Hutchinson EF (2020) Contributions of the pars lateralis, pars basilaris and femur to age estimations of the immature skeleton within a South African forensic setting. Int J Legal Med 134:1185–1193. https://doi.org/10.1007/s00414-019-02143-9

    Article  PubMed  Google Scholar 

  14. Scheuer L, Black S (2004) The juvenile skeleton. Academic Press, San Diego

    Google Scholar 

  15. Alemán I, Irurita J, Valencia AR, Martínez A, Lõpez-Lázaro S, Viciano J, Botella MC (2012) Brief communication: the Granada osteological collection of identified infants and young children. Am J Phys Anthropol 149:606–610. https://doi.org/10.1002/ajpa.22165

    Article  PubMed  Google Scholar 

  16. Lin LI-K (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:255–268. https://doi.org/10.2307/2532051

    Article  CAS  PubMed  Google Scholar 

  17. McBride GB (2005) A proposal for strength-of-agreement criteria for Lin’s concordance correlation coefficient. Hamilton, New Zealand

  18. R Development Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  19. Aykroyd RG, Lucy D, Pollard AM, Solheim T (1997) Regression analysis in adult age estimation. Am J Phys Anthropol 104:259–265. https://doi.org/10.1002/(sici)1096-8644(199710)104:2%3C259::aid-ajpa11%3E3.0.co;2-z

    Article  CAS  PubMed  Google Scholar 

  20. Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

    Book  Google Scholar 

  21. Lucy D (2005) Introduction to statistics for forensic scientists. Wiley, Chichester

    Google Scholar 

  22. Greenwell BM, Schubert Kabban CM (2014) investr: an R Package for inverse estimation. R J 6:90–100

    Article  Google Scholar 

  23. Cameron N (2022) The pattern of human growth. In: Cameron N, Schell LM (eds) Human growth and development, 3rd edn. Academic Press, San Diego, pp 1–22

  24. Stinson S (2012) Growth variation: biological and cultural factors. In: Stinson S, Bogin B, O’Rourke D (eds) Human biology: an evolutionary and biocultural perspective. Wiley, Hoboken, pp 587–635

    Chapter  Google Scholar 

  25. Braga J, Treil J (2007) Estimation of pediatric skeletal age using geometric morphometrics and three-dimensional cranial size changes. Int J Legal Med 121:439–443. https://doi.org/10.1007/s00414-007-0170-x

    Article  PubMed  Google Scholar 

  26. Tangmose S, Thevissen P, Lynnerup N, Willems G, Boldsen J (2015) Age estimation in the living: transition analysis on developing third molars. Forensic Sci Int 257:512.e1-512.e7. https://doi.org/10.1016/j.forsciint.2015.07.049

    Article  Google Scholar 

  27. Konigsberg LW, Frankenberg SR (2013) Bayes in biological anthropology. Am J Phys Anthropol 152:153–184. https://doi.org/10.1002/ajpa.22397

  28. Ferrante L, Skrami E, Gesuita R, Cameriere R (2015) Bayesian calibration for forensic age estimation. Stat Med 34:1779–1790. https://doi.org/10.1002/sim.6448

    Article  PubMed  Google Scholar 

Download references

Funding

Gonzalo Figueiro received partial financial support from the Comisión Sectorial de Investigación Científica, Universidad de la República, Uruguay (2019 Academic Mobility and Exchanges Programme).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Figueiro.

Ethics declarations

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Research involving Human Participants and/or Animals

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueiro, G., Irurita Olivares, J. & Alemán Aguilera, I. Age estimation in infant skeletal remains by measurements of the pars lateralis. Int J Legal Med 136, 1675–1684 (2022). https://doi.org/10.1007/s00414-022-02867-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-022-02867-1

Keywords

Navigation