Skip to main content

Advertisement

Log in

A novel method for determining postmortem interval based on the metabolomics of multiple organs combined with ensemble learning techniques

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Determining postmortem interval (PMI) is one of the most challenging and essential endeavors in forensic science. Developments in PMI estimation can take advantage of machine learning techniques. Currently, applying an algorithm to obtain information on multiple organs and conducting joint analysis to accurately estimate PMI are still in the early stages. This study aimed to establish a multi-organ stacking model that estimates PMI by analyzing differential compounds of four organs in rats. In a total of 140 rats, skeletal muscle, liver, lung, and kidney tissue samples were collected at each time point after death. Ultra-performance liquid chromatography coupled with high-resolution mass spectrometry was used to determine the compound profiles of the samples. The original data were preprocessed using multivariate statistical analysis to determine discriminant compounds. In addition, three interrelated and increasingly complex patterns (single organ optimal model, single organ stacking model, multi-organ stacking model) were established to estimate PMI. The accuracy and generalized area under the receiver operating characteristic curve of the multi-organ stacking model were the highest at 93% and 0.96, respectively. Only 1 of the 14 external validation samples was misclassified by the multi-organ stacking model. The results demonstrate that the application of the multi-organ combination to the stacking algorithm is a potential forensic tool for the accurate estimation of PMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data and code availability

Part of the relevant code is within the Supporting Information files. All relevant data and code are available from the corresponding author upon request.

References

  1. Peyron PA, Lehmann S, Delaby C, Baccino E, Hirtz C (2019) Biochemical markers of time since death in cerebrospinal fluid: a first step towards “Forensomics.” Crit Rev Clin Lab Sci 56(4):274–286. https://doi.org/10.1080/10408363.2019.1619158

    Article  CAS  Google Scholar 

  2. De-Giorgio F, Ciasca G, D’Amico R, Trombatore P, D’Angelo A, Rinaldi P, Milano F, Locci E, De Spirito M, d’Aloja E, Colosimo C, Pascali VL (2020) An evaluation of the objectivity and reproducibility of shear wave elastography in estimating the post-mortem interval: a tissue biomechanical perspective. Int J Legal Med 134(5):1939–1948. https://doi.org/10.1007/s00414-020-02370-5

    Article  Google Scholar 

  3. De-Giorgio F, Nardini M, Foti F, Minelli E, Papi M, d’Aloja E, Pascali VL, De Spirito M, Ciasca G (2019) A novel method for post-mortem interval estimation based on tissue nano-mechanics. Int J Legal Med 133(4):1133–1139. https://doi.org/10.1007/s00414-019-02034-z

    Article  Google Scholar 

  4. Mansour H, Krebs O, Pinnschmidt HO, Griem N, Hammann-Ehrt I, Püschel K (2019) Factors affecting dental DNA in various real post-mortem conditions. Int J Legal Med 133(6):1751–1759. https://doi.org/10.1007/s00414-019-02151-9

    Article  Google Scholar 

  5. Scrivano S, Sanavio M, Tozzo P, Caenazzo L (2019) Analysis of RNA in the estimation of post-mortem interval: a review of current evidence. Int J Legal Med 133(6):1629–1640. https://doi.org/10.1007/s00414-019-02125-x

    Article  Google Scholar 

  6. Paltian JJ, da Fonseca CAR, Pinz MP, Luchese C, Antunes Wilhelm E (2019) Post-mortem interval estimative through determination of catalase and Δ-aminolevulinate dehydratase activities in hepatic, renal, skeletal muscle and cerebral tissues of Swiss mice. Biomark Biochem Indicat Exposure Response Suscept Chem 24(5):478–483. https://doi.org/10.1080/1354750x.2019.1619837

    Article  CAS  Google Scholar 

  7. Choi KM, Zissler A, Kim E, Ehrenfellner B, Cho E, Lee SI, Steinbacher P, Yun KN, Shin JH, Kim JY, Stoiber W, Chung H, Monticelli FC, Kim JY, Pittner S (2019) Postmortem proteomics to discover biomarkers for forensic PMI estimation. Int J Legal Med 133(3):899–908. https://doi.org/10.1007/s00414-019-02011-6

    Article  Google Scholar 

  8. Mickleburgh HL, Schwalbe EC, Bonicelli A, Mizukami H, Sellitto F, Starace S, Wescott DJ, Carter DO, Procopio N (2021) Human bone proteomes before and after decomposition: investigating the effects of biological variation and taphonomic alteration on bone protein profiles and the implications for forensic proteomics. J Proteome Res 20(5):2533–2546. https://doi.org/10.1021/acs.jproteome.0c00992

    Article  CAS  Google Scholar 

  9. Pesko BK, Weidt S, McLaughlin M, Wescott DJ, Torrance H, Burgess K, Burchmore R (2020) Postmortomics: the potential of untargeted metabolomics to highlight markers for time since death. Omics: J Integ Biol 24(11):649–659. https://doi.org/10.1089/omi.2020.0084

    Article  CAS  Google Scholar 

  10. Locci E, Stocchero M, Gottardo R, De-Giorgio F, Demontis R, Nioi M, Chighine A, Tagliaro F, d’Aloja E (2021) Comparative use of aqueous humour (1)H NMR metabolomics and potassium concentration for PMI estimation in an animal model. Int J Legal Med 135(3):845–852. https://doi.org/10.1007/s00414-020-02468-w

    Article  Google Scholar 

  11. Baptista A, Pedrosa M, Curate F, Ferreira MT, Marques MPM (2022) Estimation of the post-mortem interval in human bones by infrared spectroscopy. Int J Legal Med 136(1):309–317. https://doi.org/10.1007/s00414-021-02641-9

    Article  Google Scholar 

  12. Madea B (2016) Methods for determining time of death. Forensic Sci Med Pathol 12(4):451–485. https://doi.org/10.1007/s12024-016-9776-y

    Article  Google Scholar 

  13. Wang Y, Wang Y, Wang M, Xu W, Zhang Y, Wang J (2021) Forensic entomology in China and its challenges. Insects 12(3):230. https://doi.org/10.3390/insects12030230

    Article  Google Scholar 

  14. Dash HR, Das S (2020) Thanatomicrobiome and epinecrotic community signatures for estimation of post-mortem time interval in human cadaver. Appl Microbiol Biotechnol 104(22):9497–9512. https://doi.org/10.1007/s00253-020-10922-3

    Article  CAS  Google Scholar 

  15. Díez López C, Vidaki A, Kayser M (2022) Integrating the human microbiome in the forensic toolkit: Current bottlenecks and future solutions. Forensic Sci Int Genet 56:102627. https://doi.org/10.1016/j.fsigen.2021.102627

    Article  CAS  Google Scholar 

  16. Donaldson AE, Lamont IL (2015) Metabolomics of post-mortem blood: identifying potential markers of post-mortem interval. Metabolomics 11(1):237–245. https://doi.org/10.1007/s11306-014-0691-5

    Article  CAS  Google Scholar 

  17. Castillo-Peinado LS, Luque de Castro MD (2016) Present and foreseeable future of metabolomics in forensic analysis. Anal Chim Acta 925:1–15. https://doi.org/10.1016/j.aca.2016.04.040

    Article  CAS  Google Scholar 

  18. Mora-Ortiz M, Trichard M, Oregioni A, Claus SP (2019) Thanatometabolomics: introducing NMR-based metabolomics to identify metabolic biomarkers of the time of death. Metabolomics 15(3):37. https://doi.org/10.1007/s11306-019-1498-1

    Article  CAS  Google Scholar 

  19. Kang Y-R, Park YS, Park YC, Yoon SM, JongAhn H, Kim G, Kwon SW (2012) UPLC/Q-TOF MS based metabolomics approach to post-mortem-interval discrimination: mass spectrometry based metabolomics approach. J Pharm Investig 42(1):41–46. https://doi.org/10.1007/s40005-012-0006-7

    Article  CAS  Google Scholar 

  20. Locci E, Stocchero M, Noto A, Chighine A, Natali L, Napoli PE, Caria R, De-Giorgio F, Nioi M, d’Aloja E (2019) A (1)H NMR metabolomic approach for the estimation of the time since death using aqueous humour: an animal model. Metabolomics 15(5):76. https://doi.org/10.1007/s11306-019-1533-2

    Article  CAS  Google Scholar 

  21. Zhu W, Zhai X, Zheng Z, Sun K, Yang M, Mo Y (2021) New contributions to the relationship between sequential changes of ATP-related metabolites and post-mortem interval in rats. Leg Med (Tokyo) 48:101809. https://doi.org/10.1016/j.legalmed.2020.101809

    Article  CAS  Google Scholar 

  22. Zelentsova EA, Yanshole LV, Melnikov AD, Kudryavtsev IS, Novoselov VP, Tsentalovich YP (2020) Post-mortem changes in metabolomic profiles of human serum, aqueous humor and vitreous humor. Metabolomics 16(7):80. https://doi.org/10.1007/s11306-020-01700-3

    Article  CAS  Google Scholar 

  23. Go A, Shim G, Park J, Hwang J, Nam M, Jeong H, Chung H (2019) Analysis of hypoxanthine and lactic acid levels in vitreous humor for the estimation of post-mortem interval (PMI) using LC-MS/MS. Forensic Sci Int 299:135–141. https://doi.org/10.1016/j.forsciint.2019.03.024

    Article  CAS  Google Scholar 

  24. Locci E, Bazzano G, Chighine A, Locco F, Ferraro E, Demontis R, d’Aloja E (2020) Forensic NMR metabolomics: one more arrow in the quiver. Metabolomics 16(11):118. https://doi.org/10.1007/s11306-020-01743-6

    Article  CAS  Google Scholar 

  25. Porto LF, Lima LNC, Franco A, Pianto D, Machado CEP, Vidal FB (2020) Estimating sex and age from a face: a forensic approach using machine learning based on photo-anthropometric indexes of the Brazilian population. Int J Legal Med 134(6):2239–2259. https://doi.org/10.1007/s00414-020-02346-5

    Article  Google Scholar 

  26. Chaves D, Fidalgo E, Alegre E, Alaiz-Rodríguez R, Jáñez-Martino F, Azzopardi G (2020) Assessment and estimation of face detection performance based on deep learning for forensic applications. Sensors (Basel, Switzerland) 20(16):4491. https://doi.org/10.3390/s20164491

    Article  Google Scholar 

  27. Khanagar SB, Vishwanathaiah S, Naik S, A Al-Kheraif A, Devang Divakar D, Sarode SC, Bhandi S, Patil S (2021) Application and performance of artificial intelligence technology in forensic odontology - a systematic review. Leg Med (Tokyo) 48:101826. https://doi.org/10.1016/j.legalmed.2020.101826

  28. Ezzat A, Wu M, Li XL, Kwoh CK (2017) Drug-target interaction prediction using ensemble learning and dimensionality reduction. Methods (San Diego, Calif) 129:81–88. https://doi.org/10.1016/j.ymeth.2017.05.016

    Article  CAS  Google Scholar 

  29. Kwon H, Park J, Lee Y (2019) Stacking ensemble technique for classifying breast cancer. Healthcare Inform Res 25(4):283–288. https://doi.org/10.4258/hir.2019.25.4.283

    Article  Google Scholar 

  30. van der Laan MJ, Polley EC, Hubbard AE (2007) Super learner. Statistical applications in genetics and molecular biology 6:Article25. https://doi.org/10.2202/1544-6115.1309

  31. Zhang X, Liang B, Zhang J, Hao X, Xu X, Chang HM, Leung PCK, Tan J (2021) Raman spectroscopy of follicular fluid and plasma with machine-learning algorithms for polycystic ovary syndrome screening. Mol Cell Endocrinol 523:111139. https://doi.org/10.1016/j.mce.2020.111139

    Article  CAS  Google Scholar 

  32. Yy A, Long WB, Ying HA, Yan WA, Lh C, Sn A (2020) Classification of Parkinson’s disease based on multi-modal features and stacking ensemble learning. J Neurosci Methods 350:109019. https://doi.org/10.1016/j.jneumeth.2020.109019

    Article  Google Scholar 

  33. Kim C, You SC, Reps JM, Cheong JY, Park RW (2020) Machine-learning model to predict the cause of death using a stacking ensemble method for observational data. J Am Med Inform Assoc 28(6):1098–1107. https://doi.org/10.1093/jamia/ocaa277

    Article  CAS  Google Scholar 

  34. Sato T, Zaitsu K, Tsuboi K, Nomura M, Kusano M, Shima N, Abe S, Ishii A, Tsuchihashi H, Suzuki K (2015) A preliminary study on postmortem interval estimation of suffocated rats by GC-MS/MS-based plasma metabolic profiling. Anal Bioanal Chem 407(13):3659–3665. https://doi.org/10.1007/s00216-015-8584-7

    Article  CAS  Google Scholar 

  35. Wu Z, Lu X, Chen F, Dai X, Ye Y, Yan Y, Liao L (2018) Estimation of early postmortem interval in rats by GC-MS-based metabolomics. Leg Med (Tokyo) 31:42–48. https://doi.org/10.1016/j.legalmed.2017.12.014

    Article  CAS  Google Scholar 

  36. Dai X, Fan F, Ye Y, Lu X, Chen F, Wu Z, Liao L (2019) An experimental study on investigating the postmortem interval in dichlorvos poisoned rats by GC/MS-based metabolomics. Leg Med (Tokyo) 36:28–36. https://doi.org/10.1016/j.legalmed.2018.10.002

    Article  CAS  Google Scholar 

  37. Zhao Y, Wu C, Zhu Y, Zhou C, Xiong Z, Samy Eweys A, Zhou H, Dong Y, Xiao X (2021) Metabolomics strategy for revealing the components in fermented barley extracts with Lactobacillus plantarum dy-1. Food Res Int (Ottawa, Ont) 139:109808. https://doi.org/10.1016/j.foodres.2020.109808

    Article  CAS  Google Scholar 

  38. Du T, Lin Z, Xie Y, Ye X, Tu C, Jin K, Xie J, Shen Y (2018) Metabolic profiling of femoral muscle from rats at different periods of time after death. PLoS ONE 13(9):e0203920. https://doi.org/10.1371/journal.pone.0203920

    Article  CAS  Google Scholar 

  39. Aiello D, Lucà F, Siciliano C, Frati P, Fineschi V, Rongo R, Napoli A (2021) Analytical strategy for MS-based thanatochemistry to estimate postmortem interval. J Proteome Res 20(5):2607–2617. https://doi.org/10.1021/acs.jproteome.0c01038

    Article  CAS  Google Scholar 

  40. Cao J, Li J, Gu Z, Niu JJ, An GS, Jin QQ, Wang YY, Huang P, Sun JH (2022) Combined metabolomics and machine learning algorithms to explore metabolic biomarkers for diagnosis of acute myocardial ischemia. Int J Legal Med. https://doi.org/10.1007/s00414-022-02816-y

    Article  Google Scholar 

  41. Liu Z, Li W, Geng L, Sun L, Wang Q, Yu Y, Yan P, Liang C, Ren J, Song M, Zhao Q, Lei J, Cai Y, Li J, Yan K, Wu Z, Chu Q, Li J, Wang S, Li C, Han JJ, Hernandez-Benitez R, Shyh-Chang N, Belmonte JCI, Zhang W, Qu J, Liu GH (2022) Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor. Cell Discover 8(1):6. https://doi.org/10.1038/s41421-021-00361-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China. Thanks for the equipment support provided by the School of Forensic Medicine, Hebei Medical University, and the assistance of Professor Chun-ling Ma and Professor Di Wen.

Funding

This work was supported by grants from the National Key R&D Program of China (grant no. 2018YFC0807204) and the National Natural Science Foundation of China (81971795, 81901924).

Author information

Authors and Affiliations

Authors

Contributions

Jun-hong Sun, Ying-yuan Wang, and Jie Cao conceived the idea; Xiao-jun Lu, Jian Li, and Xue Wei conducted the data analysis and drafted the manuscript; Na Li, Li-hong Dang, and Guo-shuai An established the animal model; Qiu-xiang Du and Qian-qian Jin conceived the study and performed some interpretation of the results. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Jie Cao, Ying-yuan Wang or Jun-hong Sun.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants performed by any of the authors and there is no patient consent. All experiments of rats were performed according to the ‘Guiding Principles in the Use and Care of Animals’ (NIH publication no. 85–23, revised 1996) and were approved by the Institutional Animal Care and Use Committee of Shanxi Medical University, China (rat batch number: SCXK [Jin] [2009-0001].

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

If there is any conflict, please consider Ph.D. Jun-hong Sun as the primary corresponding author.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1884 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Xj., Li, J., Wei, X. et al. A novel method for determining postmortem interval based on the metabolomics of multiple organs combined with ensemble learning techniques. Int J Legal Med 137, 237–249 (2023). https://doi.org/10.1007/s00414-022-02844-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-022-02844-8

Keywords

Navigation