Skip to main content
Log in

Average thickness of the bones of the human neurocranium: development of reference measurements to assist with blunt force trauma interpretations

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The accurate interpretation of a blunt force head injury relies on an understanding of the case circumstances (extrinsic variables) and anatomical details of the individual (intrinsic variables). Whilst it is often possible to account for many of these variables, the intrinsic variable of neurocranial thickness is difficult to account for as data for what constitutes ‘normal’ thickness is limited. The aim of this study was to investigate the effects of age, sex and ancestry on neurocranial thickness, and develop reference ranges for average neurocranial thickness in the context of those biological variables. Thickness (mm) was measured at 20 points across the frontal, left and right parietals, left and right temporals and occipital bones. Measurements were taken from post-mortem computed tomography scans of 604 individuals. Inferential statistics assessed how age, sex and ancestry affected thickness and descriptive statistics established thickness means. Mean thickness ranged from 2.11 mm (temporal squama) to 19.19 mm (petrous portion). Significant differences were noted in thickness of the frontal and temporal bones when age was considered, all bones when sex was considered and the, right parietal, left and right temporal and occipital bones when ancestry was considered. Furthermore, significant interactions in thickness were seen between age and sex in the frontal bone, ancestry and age in the temporal bone, ancestry and sex in the temporal bone, and age, sex and ancestry in the occipital bone. Given the assorted influence of the biological variables, reference measurement ranges for average thickness incorporated these variables. Such reference measurements allow forensic practitioners to identify when a neurocranial bone is of normal, or abnormal, thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The dataset is not publicly available under the project’s ethics approval.

References

  1. Kranioti EF (2015) Forensic investigation of cranial injuries due to blunt force trauma current best practice. Res Reports in Forensic Med Sci 5:25–37. https://doi.org/10.2147/RRFMS.S70423

    Article  Google Scholar 

  2. Melvin JW, Fuller PM, Daniel RP, Pavliscak GM (1969) Human head and knee tolerance to localized impacts. SAE Transactions 78(3):1772–1782. https://doi.org/10.4271/690477

    Article  Google Scholar 

  3. Lee JHC, Ondruschka B, Falland-Cheung L, Scholze M, Hammer N, Tong DC, Waddell JN (2019) An investigation on the correlation between the mechanical properties of human skull bone, its geometry, microarchitectural properties, and water content. J Healthc Eng. https://doi.org/10.1155/2019/6515797

    Article  Google Scholar 

  4. Symes SA, L’Abbé EN, Chapman EN, Wolff I, Dirkmaat DC (2012) Interpreting traumatic injury to bone in medicolegal investigations. In: Dirkmaat DC (ed) A companion to forensic anthropology. Wiley-Blackwell, Malden, MA, pp 340–389

  5. Sharkey EJ, Cassidy M, Brady J, Gilchrist MD, NicDaeid N (2012) Investigation of the force associated with the formation of lacerations and skull fractures. Int J Legal Med 126(6):835–844. https://doi.org/10.1007/s00414-011-0608-z

    Article  CAS  Google Scholar 

  6. Özkaya N, Nordin M (1999) Fundamental of biomechanics: equilibrium, motion and deformation, 2nd edn. Springer Science+Business Media, New York

    Book  Google Scholar 

  7. Anzelmo M, Ventrice F, Barbeito-Andrés J, Pucciarelli HM, Sardi ML (2015) Ontogenetic changes in cranial vault thickness in a modern sample of homo sapiens. Am J Hum Biol 27:475–485. https://doi.org/10.1002/ajhb.22673

    Article  Google Scholar 

  8. Calderbank T, Morgan B, Rutty GN, Brough A (2016) An investigation of juvenile cranial thickness - analysis of skull morphometrics across the complete developmental age range. J Forensic Radiol and Imaging 4:70–75. https://doi.org/10.1016/j.jofri.2015.12.002

    Article  Google Scholar 

  9. Roche AF (1953) Increase in cranial thickness during growth. Hum Biol 25(2):81–92

    CAS  Google Scholar 

  10. Eisová S, Rangel de Lázaro G, Píšová H, Pereira-Pedro S, Bruner E (2016) Parietal bone thickness and vascular diameters in adult modern humans: a survey on cranial remains. Anat Rec 299:888–896. https://doi.org/10.1002/ar.23348

    Article  CAS  Google Scholar 

  11. Ishida H, Dodo Y (1990) Cranial thickness of modern and neolithic populations in Japan. Hum Biol 62(3):389–401

    CAS  Google Scholar 

  12. Lynnerup N, Astrup JG, Sejrsen B (2005) Thickness of the human cranial diploe in relation to age, sex and general body build. Head Face Med 1:13. https://doi.org/10.1186/1746-160X-1-13

    Article  Google Scholar 

  13. Sabancıoğulları V, Koşar Mİ, Şalk İ, Erdil FH, Öztoprak İ, Çimen M (2012) Diploe thickness and cranial dimensions in males and females in mid-Anatolian population: an MRI study. Forensic Sci Int 219:289.e1-289.e7. https://doi.org/10.1016/j.forsciint.2011.11.033

    Article  Google Scholar 

  14. Adeloye A, Kattan KR, Silverman FN (1975) Thickness of the normal skull in the American blacks and whites. Am J Phys Anthropol 43(1):23–30. https://doi.org/10.1002/ajpa.1330430105

    Article  CAS  Google Scholar 

  15. Israel H (1968) Continuing growth in the human cranial skeleton. Archs Oral Biol 13:133–137. https://doi.org/10.1016/0003-9969(68)90044-7

    Article  CAS  Google Scholar 

  16. Todd TW (1924) Thickness of the male white cranium. Anat Rec 27(5):245–256. https://doi.org/10.1002/ar.1090270504

    Article  Google Scholar 

  17. de Boer HH, Van der Merwe AE, Soerdjbalie-Maikoe V (2016) Human cranial vault thickness in a contemporary sample of 1097 autopsy cases: relation to body weight, stature, age, sex and ancestry. Int J Legal Med 130(5):1371–1377. https://doi.org/10.1007/s00414-016-1324-5

    Article  Google Scholar 

  18. Ross MD, Lee KAP, Castle WM (1976) Skull thickness of black and white races. S Afr Med J 50(16):635–638

    CAS  Google Scholar 

  19. Ross AH, Jantz RL, McCormick WF (1998) Cranial thickness in American females and males. J Forensic Sci 43(2):267–272

    Article  CAS  Google Scholar 

  20. Mahinda HAM, Murty OP (2009) Variability in thickness of human skull bones and sternum – an autopsy experience. J Forensic Med Toxicol 26(2):26–31

    Google Scholar 

  21. Hatipoglu HG, Ozcan HN, Hatipoglu US, Yuksel E (2008) Age, sex and body mass index in relation to calvarial diploe thickness and craniometric data on MRI. Forensic Sci Int 182:46–51. https://doi.org/10.1016/j.forsciint.2008.09.014

    Article  Google Scholar 

  22. Lillie EM, Urban JE, Lynch SK, Weaver AA, Stitzel JD (2016) Evaluation of skull cortical thickness changes with age and sex from computed tomography scans. J Bone Miner Res 31(2):299–307. https://doi.org/10.1002/jbmr.2613

    Article  Google Scholar 

  23. Rahne T, Svensson S, Lagerkvist H, Holmberg M, Plontke SK, Wenzel C (2021) Assessment of temporal bone thickness for implantation of a new active bone-conduction transducer. Otol Neurotol 42:278–284. https://doi.org/10.1097/MAO.0000000000002919

    Article  Google Scholar 

  24. Ebraheim NA, Lu J, Biyani A, Brown JA, Yeasting RA (1996) An anatomic study of the thickness of the occipital bone: implications for occipitocervical instrumentation. Spine 21(15):1725–1730. https://doi.org/10.1097/00007632-199608010-00002

    Article  CAS  Google Scholar 

  25. Guignard J, Arnold A, Weisstanner C, Caversaccio M, Stieger C (2013) A bone-thickness map as a guide for bone-anchored port implantation surgery in the temporal bone. Mater 6:5291–5301. https://doi.org/10.3390/ma6115291

    Article  Google Scholar 

  26. Elahi MM, Lessard ML, Hakim S, Watkin K, Sampalis J (1997) Ultrasound in the assessment of cranial bone thickness. J Craniofac Surg 8:213–221. https://doi.org/10.1097/00001665-199705000-00014

    Article  CAS  Google Scholar 

  27. Jarquin-Valdivia AA, McCartney J, Palestrant D, Johnston SC, Gress D (2004) The thickness of the temporal squama and its implication for transcranial sonography. J Neuroimaging 14:139–142. https://doi.org/10.1177/1051228403262705

    Article  CAS  Google Scholar 

  28. Boruah S, Paskoff GR, Shender BS, Subit DL, Salzar RS, Crandall JR (2015) Variation of bone layer thicknesses and trabecular volume fraction in the adult male human calvarium. Bone 77:120–134. https://doi.org/10.1016/j.bone.2015.04.031

    Article  Google Scholar 

  29. Torimitsu S, Nishida Y, Takano T, Yajima D, Inokuchi G, Makino Y, Motomura A, Chiba F, Yamaguchi R, Hashimoto M, Hoshioka Y, Iwase H (2015) Differences in biomechanical properties and thickness among frontal and parietal bones in a Japanese sample. Forensic Sci Int 252:190.e1-190.e6. https://doi.org/10.1016/j.forsciint.2015.04.029

    Article  Google Scholar 

  30. Ruan J, Prasad P (2001) The effects of skull thickness variations on human head dynamic impact responses. Stapp Car Crash J 45:395–414

    CAS  Google Scholar 

  31. Cox M, Flavel A, Hanson I, Laver J, Wessling R (2007) The scientific investigation of mass graves: towards protocols and standard operating procedures. Cambridge University Press, New York

    Google Scholar 

  32. Dunn RR, Spiros MC, Kamnikar KR, Plemons AM, Hefner JT (2020) Ancestry estimation in forensic anthropology: a review. WIREs Forensic Sci 2:e1369. https://doi.org/10.1002/wfs2.1369

    Article  Google Scholar 

  33. The Royal Society and Royal Society of Edinburgh (2022) Forensic anthropology: a primer for courts. https://royalsociety.org/about-us/programmes/science-and-law/. Accessed 27 Jan. 2022

  34. Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiroprc Med 15:155–163. https://doi.org/10.1016/j.jcm.2016.02.012

    Article  Google Scholar 

  35. Hughes JM, Castellani CM, Popp KL, Guerriere KI, Matheny RW Jr, Nindl BC, Bouxsein ML (2020) The central role of osteocytes in the four adaptive pathways of bone’s mechanostat. Exerc Sport Sci Rev 48(3):140–148. https://doi.org/10.1249/JES.0000000000000225

    Article  Google Scholar 

  36. U.S. Department of Health and Human Services (2004) Bone health and osteoporosis: a report of the Surgeon General. Office of the Surgeon General (US), Rockville, Maryland

  37. Duren DL, Seselj M, Froehle AW, Nahhas RW, Sherwood RJ (2013) Skeletal growth and the changing genetic landscape during childhood and adulthood. Am J Phys Anthropol 150:48–57. https://doi.org/10.1002/ajpa.22183

    Article  Google Scholar 

  38. Christensen AM, Passalacqua NV, Bartelink EJ (2013) Forensic anthropology: current methods and practice. Academic Press, Oxford

    Google Scholar 

  39. Lieberman DE (1996) How and why humans grow thin skulls: experimental evidence for systemic cortical robusticity. Am J Phys Anthropol 101:217–236. https://doi.org/10.1002/(SICI)1096-8644(199610)101:2%3c217::AID-AJPA7%3e3.0.CO;2-Z

    Article  CAS  Google Scholar 

  40. Milella M, Belcastro MG, Zollikofer CPE, Mariotti V (2012) The effect of age, sex, and physical activity on entheseal morphology in a contemporary Italian skeletal collection. Am J Phys Anthropol 148:379–388. https://doi.org/10.1002/ajpa.22060

    Article  Google Scholar 

  41. Lacoste Jeanson A, Santos F, Villa C, Dupej J, Lynnerup N, Brůžek J (2017) Body mass estimation from the skeleton: an evaluation of 11 methods. Forensic Sci Int 281:183.e1-183.e8. https://doi.org/10.1016/j.forsciint.2017.10.026

    Article  Google Scholar 

  42. Garvin HM (2020) Adult sex estimation from cranial morphological traits. In: Klales AR (ed) Sex estimation of the human skeleton: history, methods, and emerging techniques, 1st edn. Academic Press, San Diego, USA, pp 95–112

    Chapter  Google Scholar 

  43. Wahl J, Graw M (2001) Metric sex differentiation of the pars petrosa ossis temporalis. Int J Legal Med 114:215–223. https://doi.org/10.1007/s004140000167

    Article  CAS  Google Scholar 

  44. Ekşi MŞ, Güdük M, Usseli MI (2021) Frontal bone is thicker in women and frontal sinus is larger in men: a morphometric analysis. J Craniofac Surg 32(5):1683–1684. https://doi.org/10.1097/SCS.0000000000007256

    Article  Google Scholar 

  45. Hershkovitz I, Greenwald C, Rothschild BM, Latimer B, Dutour O, Jellema LM, Wish-Baratz S (1999) Hyperostosis frontalis interna: an anthropological perspective. Am J Phys Anthropol 109(3):303–325. https://doi.org/10.1002/(SICI)1096-8644(199907)109:3%3c303::AID-AJPA3%3e3.0.CO;2-I

    Article  CAS  Google Scholar 

  46. Murphy RE, Garvin HM (2018) A morphometric outline analysis of ancestry and sex differences in cranial shape. J Forensic Sci 63(4):1001–1009. https://doi.org/10.1111/1556-4029.13699

    Article  Google Scholar 

  47. Park S, Shin W-S (2015) Differences in eating behaviors and masticatory performances by gender and obesity status. Physiol Behav 138:69–74. https://doi.org/10.1016/j.physbeh.2014.10.001

    Article  CAS  Google Scholar 

  48. Urban JE, Weaver AA, Lillie EM, Maldjian JA, Whitlow CT, Stitzel JD (2016) Evaluation of morphological changes in the adult skull with age and sex. J Anat 229:838–846. https://doi.org/10.1111/joa.12247

    Article  Google Scholar 

  49. Suk Yi H (2015) Morphology of the aging forehead: a three-dimensional computed tomographic study. Archives of Craniofac Surg 16(2):58–62. https://doi.org/10.7181/acfs.2015.16.2.58

    Article  Google Scholar 

  50. Kohyama K, Mioche L, Martin J-F (2002) Chewing patterns of various texture foods studied by electromyography in young and elderly populations. J Texture Stud 33(4):269–283. https://doi.org/10.1111/j.1745-4603.2002.tb01349.x

    Article  Google Scholar 

  51. Gray H (1918) Anatomy of the human body. https://www.bartleby.com/107/index.html. Accessed 23 Sep. 2021

  52. Silva AM, Shen W, Heo M, Gallagher D, Wang Z, Sardinha LB, Heymsfield SB (2010) Ethnicity-related skeletal muscle differences across the lifespan. Am J Hum Biol 22(1):76–82. https://doi.org/10.1002/ajhb.20956

    Article  Google Scholar 

  53. Schulter FP (1976) A comparative study of the temporal bone in three populations of man. Am J Phys Anthropol 44(3):453–468. https://doi.org/10.1002/ajpa.1330440309

    Article  CAS  Google Scholar 

  54. Ketel EC, de Wijka RA, de Graaf C, Stieger M (2020) Relating oral physiology and anatomy of consumers varying in age, gender and ethnicity to food oral processing behavior. Physiol Behav 215:112766. https://doi.org/10.1016/j.physbeh.2019.112766

    Article  CAS  Google Scholar 

  55. Smith HF, Terhune CE, Lockwood CA (2007) Genetic, geographic, and environmental correlates of human temporal bone variation. Am J Phys Anthropol 134:312–322. https://doi.org/10.1002/ajpa.20671

    Article  Google Scholar 

  56. Wiersema JM (2006) The petrous portion of the human temporal bone: potential for forensic individuation. Dissertation, Texas A&M University

  57. Lahr MM (1994) The multiregional model of modern human origins: a reassessment of its morphological basis. J Hum Evol 26(1):23–56. https://doi.org/10.1006/jhev.1994.1003

    Article  Google Scholar 

  58. Menegaz RA, Sublett SV, Figueroa SD, Hoffman TJ, Ravosa MJ, Aldridge K (2010) Evidence for the influence of diet on cranial form and robusticity. Anat Rec 293:630–641

    Article  Google Scholar 

  59. Ketel EC, Aguayo-Mendoza MG, de Wijk RA, de Graaf C, Piqueras-Fiszman B, Stieger M (2019) Age, gender, ethnicity and eating capability influence oral processing behaviour of liquid, semi-solid and solid foods differently. Food Res Int 119:143–151. https://doi.org/10.1016/j.foodres.2019.01.048

    Article  Google Scholar 

  60. Rovira-Lastra B, Flores-Orozco EI, Ayuso-Montero R, Peraire M, Martinez-Gomis J (2016) Peripheral, functional and postural asymmetries related to the preferred chewing side in adults with natural dentition. J Oral Rehabil 43:279–285. https://doi.org/10.1111/joor.12369

    Article  CAS  Google Scholar 

  61. Wescott DJ, Moore-Jansen PH (2001) Metric variation in the human occipital bone: forensic anthropological applications. J Forensic Sci 46(5):1159–1163

    Article  CAS  Google Scholar 

  62. Moreira-Gonzalez A, Papay FE, Zins JE (2006) Calvarial thickness and its relation to cranial bone harvest. Plast Reconstr Surg 117(6):1964–1971. https://doi.org/10.1097/01.prs.0000209933.78532.a7

    Article  CAS  Google Scholar 

  63. Crudele GDL, Merelli VG, Vener C, Milani S, Cattaneo C (2020) The frequency of cranial base fractures in lethal head trauma. J Forensic Sci 65(1):193–195. https://doi.org/10.1111/1556-4029.14149

    Article  Google Scholar 

  64. Mann RW, Kobayashi M, Schiller AL (2017) Biparietal thinning: accidental death by a fall from standing height. J Forensic Sci 62(5):1406–1409. https://doi.org/10.1111/1556-4029.13425

    Article  Google Scholar 

  65. Fenton TW, deJong JL, Haut RC (2003) Punched with a fist: the etiology of a fatal depressed cranial fracture. J Forensic Sci 48(2):277–281

    Article  Google Scholar 

  66. Kettner M, Ramsthaler F, Potente S, Bockenheimer A, Schmidt PH, Schrodt M (2014) Blunt force impact to the head using a teeball bat: systematic comparison of physical and finite element modeling. Forensic Sci, Med Pathol 10:513–517. https://doi.org/10.1007/s12024-014-9586-z

    Article  Google Scholar 

  67. Wankhede AG (2008) Patterned injuries caused by wooden plank. J Forensic Legal Med 15:118–123. https://doi.org/10.1016/j.jflm.2007.04.002

    Article  Google Scholar 

  68. Distriquin Y, Vital J-M, Ella B (2020) Biomechanical analysis of skull trauma and opportunity in neuroradiology interpretation to explain the postconcussion syndrome: literature review and case studies presentation. Eur Radiol Experimental 4:66. https://doi.org/10.1186/s41747-020-00194-x

    Article  Google Scholar 

  69. Zephro L, Galloway A (2014) The biomechanics of fracture production. In: Wedel V, Galloway A (eds) Broken bones: anthropological anlysis of blunt force trauma. 2nd edn. Charles C Thomas, Springfield, Illinois, pp 33–46

Download references

Acknowledgements

The authors are grateful to the Australian Academy of Forensic Sciences for funding this research and to the Victorian Institute of Forensic Medicine for providing access to the PMCT DICOM datasets. The authors also wish to thank Annabelle Clancy for the inter-rater data collection and Dr Chris O’Donnell (VIFM) for his comments on the manuscript.

Funding

This research was financially supported by the Australian Academy of Forensic Sciences’ 2019 Oscar Rivers Schmalzbach Foundation Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Samantha K Rowbotham, Stephen M Cordner and Soren Blau; data collection: Diana Tieppo, Magda Blaszkowska and Samantha K Rowbotham; data analysis: Calvin G Mole; writing — original draft preparation: Samantha K Rowbotham; writing — review and editing: Samantha K Rowbotham, Soren Blau, Calvin G Mole, Stephen M Cordner, Diana Tieppo and Magda Blaszkowska; funding acquisition: Samantha K Rowbotham; resources: Samantha K Rowbotham, Soren Blau and Stephen M Cordner.

Corresponding author

Correspondence to Samantha K. Rowbotham.

Ethics declarations

Ethics approval

This research was approved by the Victorian Institute of Forensic Medicine’s Research Advisory Committee (RAC 002–2019) and Ethics Committee (EC 5–2019).

Research involving human participants and/or animals

This research involved the study of deceased human participants in accordance with ethics approval.

Informed consent

Not applicable under ethics approval.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rowbotham, S.K., Mole, C.G., Tieppo, D. et al. Average thickness of the bones of the human neurocranium: development of reference measurements to assist with blunt force trauma interpretations. Int J Legal Med 137, 195–213 (2023). https://doi.org/10.1007/s00414-022-02824-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-022-02824-y

Keywords

Navigation