Willems G, Moulin-Romsee C, Solheim T (2002) Non-destructive dental-age calculation methods in adults: intra- and inter-observer effects. Forensic Sci Int 126:221–226. https://doi.org/10.1016/s0379-0738(02)00081-6
Article
PubMed
Google Scholar
Willems G (2001) A review of the most commonly used dental age estimation techniques. J Forensic Odontostomatol 19:9–17
CAS
PubMed
Google Scholar
Costa J, Montero J, Serrano S, Albaladejo A, Lopez-Valverde A, Bica I (2014) Accuracy in the legal age estimation according to the third molars mineralization among Mexicans and Columbians. Aten Primaria 46(Suppl 5):165–175. https://doi.org/10.1016/S0212-6567(14)70086-1
Article
PubMed
PubMed Central
Google Scholar
Shamim T (2018) Forensic pediatric dentistry. J Forensic Dent Sci 10:128–131. https://doi.org/10.4103/jfo.jfds_79_17
Article
PubMed
PubMed Central
Google Scholar
Markovic E, Marinkovic N, Zelic K, Milovanovic P, Djuric M, Nedeljkovic N (2021) Dental age estimation according to European formula and Willems method: comparison between children with and without cleft lip and palate. Cleft Palate Craniofac J: 1055665621990513https://doi.org/10.1177/1055665621990513
Pinchi V, Bianchi I, Pradella F et al (2021) Dental age estimation in children affected by juvenile rheumatoid arthritis. Int J Legal Med 135:619–629. https://doi.org/10.1007/s00414-020-02395-w
Article
PubMed
Google Scholar
Schmeling A, Grundmann C, Fuhrmann A et al (2008) Criteria for age estimation in living individuals. Int J Legal Med 122:457–460. https://doi.org/10.1007/s00414-008-0254-2
CAS
Article
PubMed
Google Scholar
Demirjian A, Goldstein H, Tanner JM (1973) A new system of dental age assessment. Hum Biol 45:211–227
CAS
PubMed
Google Scholar
Olze A, Bilang D, Schmidt S, Wernecke KD, Geserick G, Schmeling A (2005) Validation of common classification systems for assessing the mineralization of third molars. Int J Legal Med 119:22–26. https://doi.org/10.1007/s00414-004-0489-5
Article
PubMed
Google Scholar
Guo YC, Lin XW, Zhang WT et al (2015) Chronology of third molar mineralization in a northern Chinese population. Rechtsmedizin 25:34–39. https://doi.org/10.1007/s00194-014-0998-6
Article
Google Scholar
Liversidge HM (2008) Timing of human mandibular third molar formation. Ann Hum Biol 35:294–321. https://doi.org/10.1080/03014460801971445
CAS
Article
PubMed
Google Scholar
Guo YC, Yan CX, Lin XW et al (2014) The influence of impaction to the third molar mineralization in northwestern Chinese population. Int J Legal Med 128:659–665. https://doi.org/10.1007/s00414-014-0979-z
Article
PubMed
Google Scholar
Chaillet N, Nystrom M, Kataja M, Demirjian A (2004) Dental maturity curves in Finnish children: Demirjian’s method revisited and polynomial functions for age estimation. J Forensic Sci 49:1324–1331
PubMed
Google Scholar
Dubina TL, Dyundikova VA, Zhuk EV (1983) Biological age and its estimation. II. Assessment of biological age of albino rats by multiple regression analysis. Exp Gerontol 18:5–18. https://doi.org/10.1016/0531-5565(83)90046-3
CAS
Article
PubMed
Google Scholar
Hegde S, Patodia A, Shah K, Dixit U (2019) The applicability of the Demirjian, Willems and Chaillet standards to age estimation of 5–15 year old Indian children. J Forensic Odontostomatol 37:40–50
CAS
PubMed
PubMed Central
Google Scholar
Yang J, Xie M, Hu C et al (2021) Deep learning for detecting cerebral aneurysms with CT angiography. Radiology 298:155–163. https://doi.org/10.1148/radiol.2020192154
Article
PubMed
Google Scholar
Zhang J, Zhou Y, Vieira DN et al (2021) An efficient method for building a database of diatom populations for drowning site inference using a deep learning algorithm. Int J Legal Med. https://doi.org/10.1007/s00414-020-02497-5
Article
PubMed
PubMed Central
Google Scholar
Li Y, Wu W, Chen H, Cheng L, Wang S (2020) 3D tumor detection in automated breast ultrasound using deep convolutional neural network. Med Phys 47:5669–5680. https://doi.org/10.1002/mp.14477
Article
PubMed
Google Scholar
Ahn Y, Lee SM, Noh HN et al (2021) Use of a commercially available deep learning algorithm to measure the solid portions of lung cancer manifesting as subsolid lesions at CT: comparisons with radiologists and invasive component size at pathologic examination. Radiology: 202803. https://doi.org/10.1148/radiol.2021202803
Zheng Q, Ge Z, Du H, Li G (2021) Age estimation based on 3D pulp chamber segmentation of first molars from cone-beam-computed tomography by integrated deep learning and level set. Int J Legal Med 135:365–373. https://doi.org/10.1007/s00414-020-02459-x
Article
PubMed
Google Scholar
Toneva D, Nikolova S, Agre G, Zlatareva D, Hadjidekov V, Lazarov N (2020) Machine learning approaches for sex estimation using cranial measurements. Int J Legal Med. https://doi.org/10.1007/s00414-020-02460-4
Article
PubMed
Google Scholar
Aghnia Farda N, Lai JY, Wang JC, Lee PY, Liu JW, Hsieh IH (2020) Sanders classification of calcaneal fractures in CT images with deep learning and differential data augmentation techniques. Injury. https://doi.org/10.1016/j.injury.2020.09.010
Article
PubMed
Google Scholar
Naik A, Edla DR, Dharavath R (2021) Prediction of malignancy in lung nodules using combination of deep, fractal, and gray-level co-occurrence matrix features. Big Data. https://doi.org/10.1089/big.2020.0190
Article
PubMed
Google Scholar
Stern D, Payer C, Urschler M (2019) Automated age estimation from MRI volumes of the hand. Med Image Anal 58:101538. https://doi.org/10.1016/j.media.2019.101538
Article
PubMed
Google Scholar
Mohaiminul Islam M, Huang S, Ajwad R, Chi C, Wang Y, Hu P (2020) An integrative deep learning framework for classifying molecular subtypes of breast cancer. Comput Struct Biotechnol J 18:2185–2199. https://doi.org/10.1016/j.csbj.2020.08.005
CAS
Article
PubMed
PubMed Central
Google Scholar
Liang M, Tang W, Xu DM et al (2016) Low-dose CT screening for lung cancer: computer-aided detection of missed lung cancers. Radiology 281:279–288. https://doi.org/10.1148/radiol.2016150063
Article
PubMed
Google Scholar
Merdietio Boedi R, Banar N, De Tobel J, Bertels J, Vandermeulen D, Thevissen PW (2020) Effect of lower third molar segmentations on automated tooth development staging using a convolutional neural network. J Forensic Sci 65:481–486. https://doi.org/10.1111/1556-4029.14182
Article
PubMed
Google Scholar
De Tobel J, Radesh P, Vandermeulen D, Thevissen PW (2017) An automated technique to stage lower third molar development on panoramic radiographs for age estimation: a pilot study. J Forensic Odontostomatol 35:42–54
PubMed
PubMed Central
Google Scholar
Banar N, Bertels J, Laurent F et al (2020) Towards fully automated third molar development staging in panoramic radiographs. Int J Legal Med 134:1831–1841. https://doi.org/10.1007/s00414-020-02283-3
Article
PubMed
Google Scholar
Galibourg A, Cussat-Blanc S, Dumoncel J, Telmon N, Monsarrat P, Maret D (2021) Comparison of different machine learning approaches to predict dental age using Demirjian’s staging approach. Int J Legal Med 135:665–675. https://doi.org/10.1007/s00414-020-02489-5
Article
PubMed
Google Scholar
Stern D, Payer C, Giuliani N, Urschler M (2019) Automatic age estimation and majority age classification from multi-factorial MRI data. IEEE J Biomed Health Inform 23:1392–1403. https://doi.org/10.1109/JBHI.2018.2869606
Article
PubMed
Google Scholar
Vila-Blanco N, Carreira MJ, Varas-Quintana P, Balsa-Castro C, Tomas I (2020) Deep neural networks for chronological age estimation from OPG images. IEEE Trans Med Imaging 39:2374–2384. https://doi.org/10.1109/TMI.2020.2968765
Article
PubMed
Google Scholar
Guo YC, Han M, Chi Y et al (2021) Accurate age classification using manual method and deep convolutional neural network based on orthopantomogram images. Int J Legal Med 135:1589–1597. https://doi.org/10.1007/s00414-021-02542-x
Article
PubMed
Google Scholar
Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39:1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031
Article
PubMed
Google Scholar
Tan MX, Le QV (2019) EfficientNet: rethinking model scaling for convolutional neural networks. In: 36th International Conference on Machine Learning (ICML) Long Beach, CA
Schmeling A, Olze A, Reisinger W, Konig M, Geserick G (2003) Statistical analysis and verification of forensic age estimation of living persons in the Institute of Legal Medicine of the Berlin University Hospital Charite. Legal Medicine (Tokyo) 5:S367–S371. https://doi.org/10.1016/s1344-6223(02)00134-7
Article
Google Scholar
Olze A, Solheim T, Schulz R, Kupfer M, Pfeiffer H, Schmeling A (2010) Assessment of the radiographic visibility of the periodontal ligament in the lower third molars for the purpose of forensic age estimation in living individuals. Int J Legal Med 124:445–448. https://doi.org/10.1007/s00414-010-0488-7
Article
PubMed
Google Scholar
Kim DK, Cho BJ, Lee MJ, Kim JH (2021) Prediction of age and sex from paranasal sinus images using a deep learning network. Medicine (Baltimore) 100:e24756. https://doi.org/10.1097/MD.0000000000024756
Article
Google Scholar
Degermenci M, Ertekin T, Ulger H, Acer N, Coskun A (2016) The age-related development of maxillary sinus in children. J Craniofac Surg 27:e38-44. https://doi.org/10.1097/SCS.0000000000002304
Article
PubMed
Google Scholar