Skip to main content

With or without human interference for precise age estimation based on machine learning?

Abstract

Age estimation can aid in forensic medicine applications, diagnosis, and treatment planning for orthodontics and pediatrics. Existing dental age estimation methods rely heavily on specialized knowledge and are highly subjective, wasting time, and energy, which can be perfectly solved by machine learning techniques. As the key factor affecting the performance of machine learning models, there are usually two methods for feature extraction: human interference and autonomous extraction without human interference. However, previous studies have rarely applied these two methods for feature extraction in the same image analysis task. Herein, we present two types of convolutional neural networks (CNNs) for dental age estimation. One is an automated dental stage evaluation model (ADSE model) based on specified manually defined features, and the other is an automated end-to-end dental age estimation model (ADAE model), which autonomously extracts potential features for dental age estimation. Although the mean absolute error (MAE) of the ADSE model for stage classification is 0.17 stages, its accuracy in dental age estimation is unsatisfactory, with the MAE (1.63 years) being only 0.04 years lower than the manual dental age estimation method (MDAE model). However, the MAE of the ADAE model is 0.83 years, being reduced by half that of the MDAE model. The results show that fully automated feature extraction in a deep learning model without human interference performs better in dental age estimation, prominently increasing the accuracy and objectivity. This indicates that without human interference, machine learning may perform better in the application of medical imaging.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Willems G, Moulin-Romsee C, Solheim T (2002) Non-destructive dental-age calculation methods in adults: intra- and inter-observer effects. Forensic Sci Int 126:221–226. https://doi.org/10.1016/s0379-0738(02)00081-6

    Article  PubMed  Google Scholar 

  2. Willems G (2001) A review of the most commonly used dental age estimation techniques. J Forensic Odontostomatol 19:9–17

    CAS  PubMed  Google Scholar 

  3. Costa J, Montero J, Serrano S, Albaladejo A, Lopez-Valverde A, Bica I (2014) Accuracy in the legal age estimation according to the third molars mineralization among Mexicans and Columbians. Aten Primaria 46(Suppl 5):165–175. https://doi.org/10.1016/S0212-6567(14)70086-1

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shamim T (2018) Forensic pediatric dentistry. J Forensic Dent Sci 10:128–131. https://doi.org/10.4103/jfo.jfds_79_17

    Article  PubMed  PubMed Central  Google Scholar 

  5. Markovic E, Marinkovic N, Zelic K, Milovanovic P, Djuric M, Nedeljkovic N (2021) Dental age estimation according to European formula and Willems method: comparison between children with and without cleft lip and palate. Cleft Palate Craniofac J: 1055665621990513https://doi.org/10.1177/1055665621990513

  6. Pinchi V, Bianchi I, Pradella F et al (2021) Dental age estimation in children affected by juvenile rheumatoid arthritis. Int J Legal Med 135:619–629. https://doi.org/10.1007/s00414-020-02395-w

    Article  PubMed  Google Scholar 

  7. Schmeling A, Grundmann C, Fuhrmann A et al (2008) Criteria for age estimation in living individuals. Int J Legal Med 122:457–460. https://doi.org/10.1007/s00414-008-0254-2

    CAS  Article  PubMed  Google Scholar 

  8. Demirjian A, Goldstein H, Tanner JM (1973) A new system of dental age assessment. Hum Biol 45:211–227

    CAS  PubMed  Google Scholar 

  9. Olze A, Bilang D, Schmidt S, Wernecke KD, Geserick G, Schmeling A (2005) Validation of common classification systems for assessing the mineralization of third molars. Int J Legal Med 119:22–26. https://doi.org/10.1007/s00414-004-0489-5

    Article  PubMed  Google Scholar 

  10. Guo YC, Lin XW, Zhang WT et al (2015) Chronology of third molar mineralization in a northern Chinese population. Rechtsmedizin 25:34–39. https://doi.org/10.1007/s00194-014-0998-6

    Article  Google Scholar 

  11. Liversidge HM (2008) Timing of human mandibular third molar formation. Ann Hum Biol 35:294–321. https://doi.org/10.1080/03014460801971445

    CAS  Article  PubMed  Google Scholar 

  12. Guo YC, Yan CX, Lin XW et al (2014) The influence of impaction to the third molar mineralization in northwestern Chinese population. Int J Legal Med 128:659–665. https://doi.org/10.1007/s00414-014-0979-z

    Article  PubMed  Google Scholar 

  13. Chaillet N, Nystrom M, Kataja M, Demirjian A (2004) Dental maturity curves in Finnish children: Demirjian’s method revisited and polynomial functions for age estimation. J Forensic Sci 49:1324–1331

    PubMed  Google Scholar 

  14. Dubina TL, Dyundikova VA, Zhuk EV (1983) Biological age and its estimation. II. Assessment of biological age of albino rats by multiple regression analysis. Exp Gerontol 18:5–18. https://doi.org/10.1016/0531-5565(83)90046-3

    CAS  Article  PubMed  Google Scholar 

  15. Hegde S, Patodia A, Shah K, Dixit U (2019) The applicability of the Demirjian, Willems and Chaillet standards to age estimation of 5–15 year old Indian children. J Forensic Odontostomatol 37:40–50

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang J, Xie M, Hu C et al (2021) Deep learning for detecting cerebral aneurysms with CT angiography. Radiology 298:155–163. https://doi.org/10.1148/radiol.2020192154

    Article  PubMed  Google Scholar 

  17. Zhang J, Zhou Y, Vieira DN et al (2021) An efficient method for building a database of diatom populations for drowning site inference using a deep learning algorithm. Int J Legal Med. https://doi.org/10.1007/s00414-020-02497-5

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li Y, Wu W, Chen H, Cheng L, Wang S (2020) 3D tumor detection in automated breast ultrasound using deep convolutional neural network. Med Phys 47:5669–5680. https://doi.org/10.1002/mp.14477

    Article  PubMed  Google Scholar 

  19. Ahn Y, Lee SM, Noh HN et al (2021) Use of a commercially available deep learning algorithm to measure the solid portions of lung cancer manifesting as subsolid lesions at CT: comparisons with radiologists and invasive component size at pathologic examination. Radiology: 202803. https://doi.org/10.1148/radiol.2021202803

  20. Zheng Q, Ge Z, Du H, Li G (2021) Age estimation based on 3D pulp chamber segmentation of first molars from cone-beam-computed tomography by integrated deep learning and level set. Int J Legal Med 135:365–373. https://doi.org/10.1007/s00414-020-02459-x

    Article  PubMed  Google Scholar 

  21. Toneva D, Nikolova S, Agre G, Zlatareva D, Hadjidekov V, Lazarov N (2020) Machine learning approaches for sex estimation using cranial measurements. Int J Legal Med. https://doi.org/10.1007/s00414-020-02460-4

    Article  PubMed  Google Scholar 

  22. Aghnia Farda N, Lai JY, Wang JC, Lee PY, Liu JW, Hsieh IH (2020) Sanders classification of calcaneal fractures in CT images with deep learning and differential data augmentation techniques. Injury. https://doi.org/10.1016/j.injury.2020.09.010

    Article  PubMed  Google Scholar 

  23. Naik A, Edla DR, Dharavath R (2021) Prediction of malignancy in lung nodules using combination of deep, fractal, and gray-level co-occurrence matrix features. Big Data. https://doi.org/10.1089/big.2020.0190

    Article  PubMed  Google Scholar 

  24. Stern D, Payer C, Urschler M (2019) Automated age estimation from MRI volumes of the hand. Med Image Anal 58:101538. https://doi.org/10.1016/j.media.2019.101538

    Article  PubMed  Google Scholar 

  25. Mohaiminul Islam M, Huang S, Ajwad R, Chi C, Wang Y, Hu P (2020) An integrative deep learning framework for classifying molecular subtypes of breast cancer. Comput Struct Biotechnol J 18:2185–2199. https://doi.org/10.1016/j.csbj.2020.08.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Liang M, Tang W, Xu DM et al (2016) Low-dose CT screening for lung cancer: computer-aided detection of missed lung cancers. Radiology 281:279–288. https://doi.org/10.1148/radiol.2016150063

    Article  PubMed  Google Scholar 

  27. Merdietio Boedi R, Banar N, De Tobel J, Bertels J, Vandermeulen D, Thevissen PW (2020) Effect of lower third molar segmentations on automated tooth development staging using a convolutional neural network. J Forensic Sci 65:481–486. https://doi.org/10.1111/1556-4029.14182

    Article  PubMed  Google Scholar 

  28. De Tobel J, Radesh P, Vandermeulen D, Thevissen PW (2017) An automated technique to stage lower third molar development on panoramic radiographs for age estimation: a pilot study. J Forensic Odontostomatol 35:42–54

    PubMed  PubMed Central  Google Scholar 

  29. Banar N, Bertels J, Laurent F et al (2020) Towards fully automated third molar development staging in panoramic radiographs. Int J Legal Med 134:1831–1841. https://doi.org/10.1007/s00414-020-02283-3

    Article  PubMed  Google Scholar 

  30. Galibourg A, Cussat-Blanc S, Dumoncel J, Telmon N, Monsarrat P, Maret D (2021) Comparison of different machine learning approaches to predict dental age using Demirjian’s staging approach. Int J Legal Med 135:665–675. https://doi.org/10.1007/s00414-020-02489-5

    Article  PubMed  Google Scholar 

  31. Stern D, Payer C, Giuliani N, Urschler M (2019) Automatic age estimation and majority age classification from multi-factorial MRI data. IEEE J Biomed Health Inform 23:1392–1403. https://doi.org/10.1109/JBHI.2018.2869606

    Article  PubMed  Google Scholar 

  32. Vila-Blanco N, Carreira MJ, Varas-Quintana P, Balsa-Castro C, Tomas I (2020) Deep neural networks for chronological age estimation from OPG images. IEEE Trans Med Imaging 39:2374–2384. https://doi.org/10.1109/TMI.2020.2968765

    Article  PubMed  Google Scholar 

  33. Guo YC, Han M, Chi Y et al (2021) Accurate age classification using manual method and deep convolutional neural network based on orthopantomogram images. Int J Legal Med 135:1589–1597. https://doi.org/10.1007/s00414-021-02542-x

    Article  PubMed  Google Scholar 

  34. Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39:1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031

    Article  PubMed  Google Scholar 

  35. Tan MX, Le QV (2019) EfficientNet: rethinking model scaling for convolutional neural networks. In: 36th International Conference on Machine Learning (ICML) Long Beach, CA

  36. Schmeling A, Olze A, Reisinger W, Konig M, Geserick G (2003) Statistical analysis and verification of forensic age estimation of living persons in the Institute of Legal Medicine of the Berlin University Hospital Charite. Legal Medicine (Tokyo) 5:S367–S371. https://doi.org/10.1016/s1344-6223(02)00134-7

    Article  Google Scholar 

  37. Olze A, Solheim T, Schulz R, Kupfer M, Pfeiffer H, Schmeling A (2010) Assessment of the radiographic visibility of the periodontal ligament in the lower third molars for the purpose of forensic age estimation in living individuals. Int J Legal Med 124:445–448. https://doi.org/10.1007/s00414-010-0488-7

    Article  PubMed  Google Scholar 

  38. Kim DK, Cho BJ, Lee MJ, Kim JH (2021) Prediction of age and sex from paranasal sinus images using a deep learning network. Medicine (Baltimore) 100:e24756. https://doi.org/10.1097/MD.0000000000024756

    Article  Google Scholar 

  39. Degermenci M, Ertekin T, Ulger H, Acer N, Coskun A (2016) The age-related development of maxillary sinus in children. J Craniofac Surg 27:e38-44. https://doi.org/10.1097/SCS.0000000000002304

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China under Grant No. 2017YFA0700800; the National Natural Science Foundation of China under Grant Nos. 81701869, 61971343, and 61627811; the Key Research and Development Program of Shaanxi Province of China under Grant No. 2020GXLH-Y-008; and Young Science and Technology Star Program of Shaanxi Province of China No.2020KJXX-025.

Author information

Authors and Affiliations

Authors

Contributions

Conceiving the study and the design: S.Y.D., Y.C.G.; annotations, creating the datasets, training the models, validation tests, conducting the statistical analysis and data analysis: M.Q.H., Y.T.C., H.L., D.Z.; analyzing the results: all authors; drafting the manuscript: M.Q.H., Y.Y.G., D.Z.; critically revising for important intellectual content: S.Y.D., Y.C.G.

Corresponding authors

Correspondence to Shaoyi Du or Yu-cheng Guo.

Ethics declarations

Ethics approval

For this type of study, formal consent is not required.

Consent to participate

For this type of study, formal consent is not required.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, M., Du, S., Ge, Y. et al. With or without human interference for precise age estimation based on machine learning?. Int J Legal Med 136, 821–831 (2022). https://doi.org/10.1007/s00414-022-02796-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-022-02796-z

Keywords

  • Dental age estimation
  • Demirjian method
  • Machine learning
  • Orthopantomograms