Skip to main content
Log in

Post-mortem genetic investigation in sudden cardiac death victims: complete exon sequencing of forty genes using next-generation sequencing

  • Short Communication
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Sudden cardiac death (SCD) in young people is predominantly caused by genetic causes as cardiomyopathies. Hypertrophic cardiomyopathy is the most common genetic cardiovascular disease and is responsible for the major proportion of SCD in the young. The purpose of this study was to identify the genetic variants present in young SCD victims with HCM characteristics. From the Portuguese records of autopsies performed at the National Institute of Legal Medicine and Forensic Sciences, North Delegation, 16 young (16–50 years) SCD victims whose death was suspected to be a manifestation of HCM were selected. Using next-generation sequencing, the coding regions of 40 genes associated with HCM, candidates, or strongly related to HCM-phenocopies were investigated. The victims included in this study were all males, with a mean age of 33.4 ± 11.7 years, left ventricle mean thickness of 21.5 ± 6.28 mm, and the majority of deaths occurred during sleep (36%). A pathogenic or likely pathogenic variant was identified in six out of 16 (37.5%) victims, in the most common HCM genes (MYBPC3 and MYH7). Our results indicate that molecular autopsy of SCD victims contributes to a more precise identification of a cause of death, and this can be used in the prevention of SCD cases through family screening of first relatives who may carry the same pathogenic variant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data availability

The data that support the findings of this study are available from the corresponding author, J.F., on reasonable request.

Code Availability

Not applicable

References

  1. Markwerth P, Bajanowski T, Tzimas I, Dettmeyer R (2021) Sudden cardiac death-update. Int J Legal Med 135:483–495. https://doi.org/10.1007/s00414-020-02481-z

    Article  CAS  PubMed  Google Scholar 

  2. Zipes DP, Wellens HJ (1998) Sudden cardiac death. Circulation 98:2334–2351. https://doi.org/10.1161/01.cir.98.21.2334

    Article  CAS  PubMed  Google Scholar 

  3. Fishman GI, Chugh SS, Dimarco JP et al (2010) Sudden cardiac death prediction and prevention: report from a National Heart, Lung, and Blood Institute and Heart Rhythm Society Workshop. Circulation 122:2335–2348. https://doi.org/10.1161/CIRCULATIONAHA.110.976092

    Article  PubMed Central  PubMed  Google Scholar 

  4. Chugh SS, Reinier K, Teodorescu C et al (2008) Epidemiology of sudden cardiac death: clinical and research implications. Prog Cardiovasc Dis 51:213–228. https://doi.org/10.1016/j.pcad.2008.06.003

    Article  PubMed Central  PubMed  Google Scholar 

  5. Chappex N, Schlaepfer J, Fellmann F, Bhuiyan ZA, Wilhelm M, Michaud K (2015) Sudden cardiac death among general population and sport related population in forensic experience. J Forensic Leg Med 35:62–68. https://doi.org/10.1016/j.jflm.2015.07.004

    Article  PubMed  Google Scholar 

  6. Bagnall RD, Weintraub RG, Ingles J et al (2016) A prospective study of sudden cardiac death among children and young adults. N Engl J Med 374:2441–2452. https://doi.org/10.1056/NEJMoa1510687

    Article  PubMed  Google Scholar 

  7. Sabatasso S, Banz Y, Ringger R et al (2020) Second opinion system for sudden cardiac death cases in forensic practice. Int J Legal Med 134:1255–1263. https://doi.org/10.1007/s00414-019-02225-8

    Article  PubMed  Google Scholar 

  8. Bellas JJA, Sanchez C, Gonzalez A, Forteza A, Lopez V, Fernandez JG (2021) Hypertrophic cardiomyopathy surgery: perioperative anesthetic management with two different and combined techniques. Saudi J Anaesth 15:189–192. https://doi.org/10.4103/sja.sja_952_20

    Article  PubMed Central  PubMed  Google Scholar 

  9. Maron BJ, Rowin EJ, Maron MS (2018) Global burden of hypertrophic cardiomyopathy. JACC Heart Fail 6:376–378. https://doi.org/10.1016/j.jchf.2018.03.004

    Article  PubMed  Google Scholar 

  10. Authors/Task Force M, Elliott PM, Anastasakis A et al (2014) 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 35:2733–2779. https://doi.org/10.1093/eurheartj/ehu284

    Article  Google Scholar 

  11. Burke MA, Cook SA, Seidman JG, Seidman CE (2016) Clinical and mechanistic insights into the genetics of cardiomyopathy. J Am Coll Cardiol 68:2871–2886. https://doi.org/10.1016/j.jacc.2016.08.079

    Article  PubMed Central  PubMed  Google Scholar 

  12. Marian AJ, Braunwald E (2017) Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res 121:749–770. https://doi.org/10.1161/CIRCRESAHA.117.311059

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Sedaghat-Hamedani F, Kayvanpour E, Tugrul OF et al (2018) Clinical outcomes associated with sarcomere mutations in hypertrophic cardiomyopathy: a meta-analysis on 7675 individuals. Clin Res Cardiol 107:30–41. https://doi.org/10.1007/s00392-017-1155-5

    Article  PubMed  Google Scholar 

  14. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics, Babraham Institute, Cambridge, UK https://github.com/s-andrews/FastQC

    Google Scholar 

  15. Gordon A, Hannon G (2010) FASTX-Toolkit. FASTQ/A short-reads pre-processing tools (version 0.0. 14). http://hannonlab.cshl.edu/fastx_toolkit/

  16. Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–ii90

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kent WJ, Sugnet CW, Furey TS et al (2002) The human genome browser at UCSC. Genome Res 12:996–1006. https://doi.org/10.1101/gr.229102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Barnett DW, Garrison EK, Quinlan AR, Stromberg MP, Marth GT (2011) BamTools: a C++ API and toolkit for analyzing and managing BAM files. Bioinformatics 27:1691–1692. https://doi.org/10.1093/bioinformatics/btr174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Garrison E, Marth G (2012) Haplotype-based variant detection from short-read sequencing. arXiv preprint arXiv:12073907. https://doi.org/10.1101/2021.05.21.445151

  21. Garrison E, Kronenberg ZN, Dawson ET, Pedersen BS, Prins P (2021) Vcflib and tools for processing the VCF variant call format. BioRxiv:2021.05.21.445151. https://doi.org/10.1101/2021.05.21.445151

  22. Yang H, Wang K (2015) Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat Protoc 10:1556–1566. https://doi.org/10.1038/nprot.2015.105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Ng PC, Henikoff S (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814. https://doi.org/10.1093/nar/gkg509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet Chapter 7(Unit7):20. https://doi.org/10.1002/0471142905.hg0720s76

    Article  Google Scholar 

  25. Schwarz JM, Cooper DN, Schuelke M, Seelow D (2014) MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 11:361–362. https://doi.org/10.1038/nmeth.2890

    Article  CAS  PubMed  Google Scholar 

  26. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  27. Ramani R, Krumholz K, Huang YF, Siepel A (2019) PhastWeb: a web interface for evolutionary conservation scoring of multiple sequence alignments using phastCons and phyloP. Bioinformatics 35:2320–2322. https://doi.org/10.1093/bioinformatics/bty966

    Article  CAS  PubMed  Google Scholar 

  28. Raponi M, Kralovicova J, Copson E et al (2011) Prediction of single-nucleotide substitutions that result in exon skipping: identification of a splicing silencer in BRCA1 exon 6. Hum Mutat 32:436–444. https://doi.org/10.1002/humu.21458

    Article  CAS  PubMed  Google Scholar 

  29. Reese MG, Eeckman FH, Kulp D, Haussler D (1997) Improved splice site detection in Genie. J Comput Biol 4:311–323. https://doi.org/10.1089/cmb.1997.4.311

    Article  CAS  PubMed  Google Scholar 

  30. Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed Central  PubMed  Google Scholar 

  31. Wald DS, Law M, Morris JK (2004) Mortality from hypertrophic cardiomyopathy in England and Wales: clinical and screening implications. Int J Cardiol 97:479–484. https://doi.org/10.1016/j.ijcard.2003.11.014

    Article  PubMed  Google Scholar 

  32. Olivotto I, Maron MS, Adabag AS et al (2005) Gender-related differences in the clinical presentation and outcome of hypertrophic cardiomyopathy. J Am Coll Cardiol 46:480–487. https://doi.org/10.1016/j.jacc.2005.04.043

    Article  PubMed  Google Scholar 

  33. Yamaji K, Fujimoto S, Yutani C et al (2001) Does the progression of myocardial fibrosis lead to atrial fibrillation in patients with hypertrophic cardiomyopathy? Cardiovasc Pathol 10:297–303. https://doi.org/10.1016/s1054-8807(01)00086-2

    Article  CAS  PubMed  Google Scholar 

  34. Hellenthal N, Gaertner-Rommel A, Klauke B et al (2017) Molecular autopsy of sudden unexplained deaths reveals genetic predispositions for cardiac diseases among young forensic cases. Europace 19:1881–1890. https://doi.org/10.1093/europace/euw247

    Article  PubMed  Google Scholar 

  35. Ripoll-Vera T, Perez Luengo C, Borondo Alcazar JC et al (2021) Sudden cardiac death in persons aged 50 years or younger: diagnostic yield of a regional molecular autopsy program using massive sequencing. Rev Esp Cardiol (Engl Ed) 74:402–413. https://doi.org/10.1016/j.rec.2020.03.030

    Article  Google Scholar 

  36. Torkamani A, Muse ED, Spencer EG et al (2016) Molecular autopsy for sudden unexpected death. JAMA 316:1492–1494. https://doi.org/10.1001/jama.2016.11445

    Article  PubMed Central  PubMed  Google Scholar 

  37. Neubauer J, Lecca MR, Russo G et al (2018) Exome analysis in 34 sudden unexplained death (SUD) victims mainly identified variants in channelopathy-associated genes. Int J Legal Med 132:1057–1065. https://doi.org/10.1007/s00414-018-1775-y

    Article  PubMed  Google Scholar 

  38. Hertz CL, Christiansen SL, Ferrero-Miliani L et al (2016) Next-generation sequencing of 100 candidate genes in young victims of suspected sudden cardiac death with structural abnormalities of the heart. Int J Legal Med 130:91–102. https://doi.org/10.1007/s00414-015-1261-8

    Article  CAS  PubMed  Google Scholar 

  39. Loporcaro CG, Tester DJ, Maleszewski JJ, Kruisselbrink T, Ackerman MJ (2014) Confirmation of cause and manner of death via a comprehensive cardiac autopsy including whole exome next-generation sequencing. Arch Pathol Lab Med 138:1083–1089. https://doi.org/10.5858/arpa.2013-0479-SA

    Article  CAS  PubMed  Google Scholar 

  40. Campuzano O, Sanchez-Molero O, Allegue C et al (2014) Post-mortem genetic analysis in juvenile cases of sudden cardiac death. Forensic Sci Int 245:30–37. https://doi.org/10.1016/j.forsciint.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  41. Kane DA, Triedman J (2014) Post-mortem genetic testing in a family with long-QT syndrome and hypertrophic cardiomyopathy. Cardiovasc Pathol 23:107–109. https://doi.org/10.1016/j.carpath.2013.11.003

    Article  PubMed  Google Scholar 

  42. Liu X, Jiang T, Piao C et al (2015) Screening mutations of MYBPC3 in 114 unrelated patients with hypertrophic cardiomyopathy by targeted capture and next-generation sequencing. Sci Rep 5:11411. https://doi.org/10.1038/srep11411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Helms AS, Thompson AD, Glazier AA et al (2020) Spatial and Functional Distribution of MYBPC3 Pathogenic Variants and Clinical Outcomes in Patients With Hypertrophic Cardiomyopathy. Circ Genom Precis Med 13:396–405. https://doi.org/10.1161/CIRCGEN.120.002929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Ross SB, Bagnall RD, Ingles J, Van Tintelen JP, Semsarian C (2017) Burden of recurrent and ancestral mutations in families with hypertrophic cardiomyopathy. Circ Cardiovasc Genet 10. https://doi.org/10.1161/CIRCGENETICS.116.001671

  45. Alders M, Jongbloed R, Deelen W et al (2003) The 2373insG mutation in the MYBPC3 gene is a founder mutation, which accounts for nearly one-fourth of the HCM cases in the Netherlands. Eur Heart J 24:1848–1853. https://doi.org/10.1016/s0195-668x(03)00466-4

    Article  CAS  PubMed  Google Scholar 

  46. Waldmüller S, Müller M, Rackebrandt K et al (2008) Array-based resequencing assay for mutations causing hypertrophic cardiomyopathy. Clin Chem 54:682–687. https://doi.org/10.1373/clinchem.2007.099119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Kostareva A, Kiselev A, Gudkova A et al (2016) Genetic spectrum of idiopathic restrictive cardiomyopathy uncovered by next-generation sequencing. PLoS One 11:e0163362. https://doi.org/10.1371/journal.pone.0163362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Walsh R, Thomson KL, Ware JS et al (2017) Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet Med 19:192–203. https://doi.org/10.1038/gim.2016.90

    Article  PubMed  Google Scholar 

  49. Dewulf JP, Barrea C, Vincent MF et al (2016) Evidence of a wide spectrum of cardiac involvement due to ACAD9 mutations: report on nine patients. Mol Genet Metab 118:185–189. https://doi.org/10.1016/j.ymgme.2016.05.005

    Article  CAS  PubMed  Google Scholar 

  50. Ahmed ST, Alston CL, Hopton S et al (2017) Using a quantitative quadruple immunofluorescent assay to diagnose isolated mitochondrial Complex I deficiency. Sci Rep 7:15676. https://doi.org/10.1038/s41598-017-14623-2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Liu W, Deng J, Ding W et al (2017) Decreased KCNE2 expression participates in the development of cardiac hypertrophy by regulation of calcineurin-NFAT (nuclear factor of activated T cells) and mitogen-activated protein kinase pathways. Circ Heart Fail 10. https://doi.org/10.1161/CIRCHEARTFAILURE.117.003960

  52. Wang D, Shah KR, Um SY et al (2014) Cardiac channelopathy testing in 274 ethnically diverse sudden unexplained deaths. Forensic Sci Int 237:90–99. https://doi.org/10.1016/j.forsciint.2014.01.014

    Article  CAS  PubMed  Google Scholar 

  53. Attwood PV, Muimo R (2018) The actions of NME1/NDPK-A and NME2/NDPK-B as protein kinases. Lab Invest 98:283–290. https://doi.org/10.1038/labinvest.2017.125

    Article  CAS  PubMed  Google Scholar 

  54. Sikkema-Raddatz B, Johansson LF, de Boer EN et al (2013) Targeted next-generation sequencing can replace Sanger sequencing in clinical diagnostics. Hum Mutat 34:1035–1042. https://doi.org/10.1002/humu.22332

    Article  CAS  PubMed  Google Scholar 

  55. Hertz CL, Christiansen SL, Ferrero-Miliani L et al (2015) Next-generation sequencing of 34 genes in sudden unexplained death victims in forensics and in patients with channelopathic cardiac diseases. Int J Legal Med 129:793–800. https://doi.org/10.1007/s00414-014-1105-y

    Article  CAS  PubMed  Google Scholar 

  56. Harper AR, Bowman M, Hayesmoore JBG et al (2020) Reevaluation of the South Asian MYBPC3(Delta25bp) intronic deletion in hypertrophic cardiomyopathy. Circ Genom Precis Med 13:e002783. https://doi.org/10.1161/CIRCGEN.119.002783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Mendes de Almeida R, Tavares J, Martins S et al (2017) Whole gene sequencing identifies deep-intronic variants with potential functional impact in patients with hypertrophic cardiomyopathy. PLoS One 12:e0182946. https://doi.org/10.1371/journal.pone.0182946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Funding

This work received financial support from PT national funds (FCT/MCTES, Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior) through the project UIDB/50006/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Fadoni.

Ethics declarations

Ethics approval

All procedures performed involving human participants were approved by the Investigation, Formation and Documentation Department of the National Institute of Legal Medicine and Forensic Sciences—Portugal and were in accordance with the ethical standards of the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent to participate

The paper has been sufficiently anonymized not to cause harm neither to the deceased nor for their families.

Consent for publication

All authors give consent for publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Fig. S1

Outline of the selection procedure of young SCD victims with HCM characteristics (PNG 66 kb)

High resolution image (TIF 162 kb)

Fig. S2

Summary of the NGS laboratory analysis workflow (PNG 76 kb)

High resolution image (TIF 177 kb)

ESM 1

(DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadoni, J., Santos, A. & Cainé, L. Post-mortem genetic investigation in sudden cardiac death victims: complete exon sequencing of forty genes using next-generation sequencing. Int J Legal Med 136, 483–491 (2022). https://doi.org/10.1007/s00414-021-02765-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-021-02765-y

Keywords

Navigation